Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1996 Jan;110(1):203–210. doi: 10.1104/pp.110.1.203

Two novel thioesterases are key determinants of the bimodal distribution of acyl chain length of Cuphea palustris seed oil.

K Dehesh 1, P Edwards 1, T Hayes 1, A M Cranmer 1, J Fillatti 1
PMCID: PMC157710  PMID: 8587983

Abstract

The seed oil of Cuphea palustris has an unusual fatty-acyl composition, whereby the principal fatty-acyl groups, myristate (64%) and caprylate (20%), differ by more than two methylenes. We have isolated two thioesterase (TE) cDNAs from C. palustris, encoding proteins designated Cp FatB1 and Cp FatB2, which, when expressed in Escherichia coli, have TE activities specific for 8:0/10:0- and 14:0/16:0-acyl carrier protein substrates, respectively. The specific activities of the recombinant affinity-purified enzymes indicate that Cp FatB2 is kinetically superior to Cp FatB1. This result is consistent with the predominance of 14:0 in the seed oil, despite apparently equal mRNA abundance of the two transcripts in the seed. In C. palustris the expression of both sequences is confined to the seed tissues. Based on these findings we propose that these two enzymes are major factors determining the bimodal chain-length composition of C. palustris oil. Analysis of the immature and mature seed oil by reverse-phase high-performance liquid chromatography confirmed that the principal triglycerides contain both 8:0 and 14:0. This result indicates that both fatty acids are synthesized at the same time and in the same cells at all developmental stages during oil deposition, suggesting that the two TEs act together in the same fatty acid synthesis system.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Browse J., McCourt P. J., Somerville C. R. Fatty acid composition of leaf lipids determined after combined digestion and fatty acid methyl ester formation from fresh tissue. Anal Biochem. 1986 Jan;152(1):141–145. doi: 10.1016/0003-2697(86)90132-6. [DOI] [PubMed] [Google Scholar]
  2. Dörmann P., Voelker T. A., Ohlrogge J. B. Cloning and expression in Escherichia coli of a novel thioesterase from Arabidopsis thaliana specific for long-chain acyl-acyl carrier proteins. Arch Biochem Biophys. 1995 Jan 10;316(1):612–618. doi: 10.1006/abbi.1995.1081. [DOI] [PubMed] [Google Scholar]
  3. Graham S. A. Cuphea: a new plant source of medium-chain fatty acids. Crit Rev Food Sci Nutr. 1989;28(2):139–173. doi: 10.1080/10408398909527495. [DOI] [PubMed] [Google Scholar]
  4. Jones A., Davies H. M., Voelker T. A. Palmitoyl-acyl carrier protein (ACP) thioesterase and the evolutionary origin of plant acyl-ACP thioesterases. Plant Cell. 1995 Mar;7(3):359–371. doi: 10.1105/tpc.7.3.359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
  6. Somerville C., Browse J. Plant lipids: metabolism, mutants, and membranes. Science. 1991 Apr 5;252(5002):80–87. doi: 10.1126/science.252.5002.80. [DOI] [PubMed] [Google Scholar]
  7. Töpfer R., Martini N., Schell J. Modification of plant lipid synthesis. Science. 1995 May 5;268(5211):681–686. doi: 10.1126/science.268.5211.681. [DOI] [PubMed] [Google Scholar]
  8. Voelker T. A., Worrell A. C., Anderson L., Bleibaum J., Fan C., Hawkins D. J., Radke S. E., Davies H. M. Fatty acid biosynthesis redirected to medium chains in transgenic oilseed plants. Science. 1992 Jul 3;257(5066):72–74. doi: 10.1126/science.1621095. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES