Abstract
The root ultrastructure and transmembrane electron transport activities of two Plantago species have been examined with respect to alterations in response to Fe deficiency, exogenously supplied auxin, and the presence of chromium in the external medium. Both species showed increased ferric reductase activity upon Fe starvation, but they differed in the maximum rates. The addition of chromium to the nutrient solution led to a further enhancement in Fe-ethylenediaminetetraacetate reduction by Fe-deficient plants. In roots of Plantago lanceolata, the enhanced redox activity is associated with the formation of transfer cells in the epidermis. Similar characteristics of rhizodermal cells were observed in Fe-sufficient roots 3 d after application of the auxin analog 2,4-dichlorophenoxy-acetic acid. No structural adaptations occurred in roots of Plantago maritima. A quantitative estimation of the frequencies of transfer cells in root segments of Fe-deficient plants that differ in reduction activity revealed no correlation between the two phenomena. It is concluded that the area of plasmalemma infoldings is not specialized for the enhanced reduction of extracytoplasmatic Fe in response to Fe deficiency. The role of transfer cells in the adaptation to suboptimal Fe availability and the mechanisms triggering their formation are discussed.
Full Text
The Full Text of this article is available as a PDF (3.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bienfait H. F. Proteins under the Control of the Gene for Fe Efficiency in Tomato. Plant Physiol. 1988 Nov;88(3):785–787. doi: 10.1104/pp.88.3.785. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bienfait H. F. Regulated redox processes at the plasmalemma of plant root cells and their function in iron uptake. J Bioenerg Biomembr. 1985 Apr;17(2):73–83. doi: 10.1007/BF00744199. [DOI] [PubMed] [Google Scholar]
- Landsberg E. C. Function of Rhizodermal Transfer Cells in the Fe Stress Response Mechanism of Capsicum annuum L. Plant Physiol. 1986 Oct;82(2):511–517. doi: 10.1104/pp.82.2.511. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lesuisse E., Labbe P. Iron Reduction and Trans Plasma Membrane Electron Transfer in the Yeast Saccharomyces cerevisiae. Plant Physiol. 1992 Oct;100(2):769–777. doi: 10.1104/pp.100.2.769. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lilley R. M. Isolation of Functionally Intact Rhodoplasts from Griffithsia monilis (Ceramiaceae, Rhodophyta). Plant Physiol. 1981 Jan;67(1):5–8. doi: 10.1104/pp.67.1.5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Romera F. J., Alcantara E. Iron-Deficiency Stress Responses in Cucumber (Cucumis sativus L.) Roots (A Possible Role for Ethylene?). Plant Physiol. 1994 Aug;105(4):1133–1138. doi: 10.1104/pp.105.4.1133. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Römheld V., Marschner H. Evidence for a specific uptake system for iron phytosiderophores in roots of grasses. Plant Physiol. 1986 Jan;80(1):175–180. doi: 10.1104/pp.80.1.175. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sijmons P. C., Lanfermeijer F. C., de Boer A. H., Prins H. B., Bienfait H. F. Depolarization of Cell Membrane Potential during Trans-Plasma Membrane Electron Transfer to Extracellular Electron Acceptors in Iron-Deficient Roots of Phaseolus vulgaris L. Plant Physiol. 1984 Dec;76(4):943–946. doi: 10.1104/pp.76.4.943. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weisenseel M. H., Dorn A., Jaffe L. F. Natural H Currents Traverse Growing Roots and Root Hairs of Barley (Hordeum vulgare L.). Plant Physiol. 1979 Sep;64(3):512–518. doi: 10.1104/pp.64.3.512. [DOI] [PMC free article] [PubMed] [Google Scholar]
