Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1996 Jan;110(1):311–319. doi: 10.1104/pp.110.1.311

Developmental and growth temperature regulation of two different microsomal omega-6 desaturase genes in soybeans.

E P Heppard 1, A J Kinney 1, K L Stecca 1, G H Miao 1
PMCID: PMC157722  PMID: 8587990

Abstract

The polyunsaturated fatty acid content is one of the major factors influencing the quality of vegetable oils. Edible oils rich in monounsaturated fatty acid provide improved oil stability, flavor, and nutrition for human and animal consumption. In plants, the microsomal omega-6 desaturase-catalyzed pathway is the primary route of production of polyunsaturated lipids. We report the isolation of two different cDNA sequences, FAD2-1 and FAD2-2, encoding microsomal omega-6 desaturase in soybeans and the characterization of their developmental and temperature regulation. The FAD2-1 gene is strongly expressed in developing seeds, whereas the FAD2-2 gene is constitutively expressed in both vegetative tissues and developing seeds. Thus, the FAD2-2 gene-encoded omega-6 desaturase appears to be responsible for production of polyunsaturated fatty acids within membrane lipids in both vegetative tissues and developing seeds. The seed-specifically expressed FAD2-1 gene is likely to play a major role in controlling conversion of oleic acid to linoleic acid within storage lipids during seed development. In both soybean seed and leaf tissues, linoleic acid and linolenic acid levels gradually increase as temperature decreases. However, the levels of transcripts for FAD2-1, FAD2-2, and the plastidial omega-6 desaturase gene (FAD 6) do not increase at low temperature. These results suggest that the elevated polyunsaturated fatty acid levels in developing soybean seeds grown at low temperature are not due to the enhanced expression of omega-6 desaturase genes.

Full Text

The Full Text of this article is available as a PDF (2.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arondel V., Lemieux B., Hwang I., Gibson S., Goodman H. M., Somerville C. R. Map-based cloning of a gene controlling omega-3 fatty acid desaturation in Arabidopsis. Science. 1992 Nov 20;258(5086):1353–1355. doi: 10.1126/science.1455229. [DOI] [PubMed] [Google Scholar]
  2. Boutry M., Chua N. H. A nuclear gene encoding the beta subunit of the mitochondrial ATP synthase in Nicotiana plumbaginifolia. EMBO J. 1985 Sep;4(9):2159–2165. doi: 10.1002/j.1460-2075.1985.tb03910.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Gibson S., Arondel V., Iba K., Somerville C. Cloning of a temperature-regulated gene encoding a chloroplast omega-3 desaturase from Arabidopsis thaliana. Plant Physiol. 1994 Dec;106(4):1615–1621. doi: 10.1104/pp.106.4.1615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Goldberg R. B., Barker S. J., Perez-Grau L. Regulation of gene expression during plant embryogenesis. Cell. 1989 Jan 27;56(2):149–160. doi: 10.1016/0092-8674(89)90888-x. [DOI] [PubMed] [Google Scholar]
  5. Kodama H., Hamada T., Horiguchi G., Nishimura M., Iba K. Genetic Enhancement of Cold Tolerance by Expression of a Gene for Chloroplast [omega]-3 Fatty Acid Desaturase in Transgenic Tobacco. Plant Physiol. 1994 Jun;105(2):601–605. doi: 10.1104/pp.105.2.601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Los D., Horvath I., Vigh L., Murata N. The temperature-dependent expression of the desaturase gene desA in Synechocystis PCC6803. FEBS Lett. 1993 Feb 22;318(1):57–60. doi: 10.1016/0014-5793(93)81327-v. [DOI] [PubMed] [Google Scholar]
  7. Miquel M. F., Browse J. A. High-Oleate Oilseeds Fail to Develop at Low Temperature. Plant Physiol. 1994 Oct;106(2):421–427. doi: 10.1104/pp.106.2.421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Miquel M., James D., Jr, Dooner H., Browse J. Arabidopsis requires polyunsaturated lipids for low-temperature survival. Proc Natl Acad Sci U S A. 1993 Jul 1;90(13):6208–6212. doi: 10.1073/pnas.90.13.6208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Neidleman S. L. Effects of temperature on lipid unsaturation. Biotechnol Genet Eng Rev. 1987;5:245–268. doi: 10.1080/02648725.1987.10647839. [DOI] [PubMed] [Google Scholar]
  10. Ohlrogge J. B., Browse J., Somerville C. R. The genetics of plant lipids. Biochim Biophys Acta. 1991 Feb 26;1082(1):1–26. doi: 10.1016/0005-2760(91)90294-r. [DOI] [PubMed] [Google Scholar]
  11. Okuley J., Lightner J., Feldmann K., Yadav N., Lark E., Browse J. Arabidopsis FAD2 gene encodes the enzyme that is essential for polyunsaturated lipid synthesis. Plant Cell. 1994 Jan;6(1):147–158. doi: 10.1105/tpc.6.1.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Somerville C., Browse J. Plant lipids: metabolism, mutants, and membranes. Science. 1991 Apr 5;252(5002):80–87. doi: 10.1126/science.252.5002.80. [DOI] [PubMed] [Google Scholar]
  14. Wada H., Gombos Z., Murata N. Enhancement of chilling tolerance of a cyanobacterium by genetic manipulation of fatty acid desaturation. Nature. 1990 Sep 13;347(6289):200–203. doi: 10.1038/347200a0. [DOI] [PubMed] [Google Scholar]
  15. Yadav N. S., Wierzbicki A., Aegerter M., Caster C. S., Pérez-Grau L., Kinney A. J., Hitz W. D., Booth J. R., Jr, Schweiger B., Stecca K. L. Cloning of higher plant omega-3 fatty acid desaturases. Plant Physiol. 1993 Oct;103(2):467–476. doi: 10.1104/pp.103.2.467. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES