Abstract
To understand the root, shoot, and Fe-nutritional factors that regulate root Fe-acquisition processes in dicotyledonous plants, Fe(III) reduction and net proton efflux were quantified in root systems of an Fe-hyperaccumulating mutant (dgl) and a parental (cv Dippes Gelbe Viktoria [DGV]) genotype of pea (Pisum sativum). Plants were grown with (+Fe treated) or without (-Fe treated) added Fe(III)-N,N'-ethylenebis[2-(2-hydroxyphenyl)-glycine] (2 [mu]M); root Fe(III) reduction was measured in solutions containing growth nutrients, 0.1 mM Fe(III)-ethylenediaminetetraacetic acid, and 0.1 mM Na2-bathophenanthrolinedisulfonic acid. Daily measurements of Fe(III) reduction (d 10-20) revealed initially low rates in +Fe-treated and -Fe-treated dgl, followed by a nearly 5-fold stimulation in rates by d 15 for both growth types. In DGV, root Fe(III) reductase activity increased only minimally by d 20 in +Fe-treated plants and about 3-fold in -Fe-treated plants, beginning on d 15. Net proton efflux was enhanced in roots of -Fe-treated DGV and both dgl growth types, relative to +Fe-treated DGV. In dgl, the enhanced proton efflux occurred prior to the increase in root Fe(III) reductase activity. Reductase studies using plants with reciprocal shoot:root grafts demonstrated that shoot expression of the dgl gene leads to the generation of a transmissible signal that enhances Fe(III) reductase activity in roots. The dgl gene product may alter or interfere with a normal component of a signal transduction mechanism regulating Fe homeostasis in plants.
Full Text
The Full Text of this article is available as a PDF (693.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bienfait H. F. Proteins under the Control of the Gene for Fe Efficiency in Tomato. Plant Physiol. 1988 Nov;88(3):785–787. doi: 10.1104/pp.88.3.785. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Buckhout T. J., Bell P. F., Luster D. G., Chaney R. L. Iron-Stress Induced Redox Activity in Tomato (Lycopersicum esculentum Mill.) Is Localized on the Plasma Membrane. Plant Physiol. 1989 May;90(1):151–156. doi: 10.1104/pp.90.1.151. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grusak M. A., Welch R. M., Kochian L. V. Does Iron Deficiency in Pisum sativum Enhance the Activity of the Root Plasmalemma Iron Transport Protein? Plant Physiol. 1990 Nov;94(3):1353–1357. doi: 10.1104/pp.94.3.1353. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grusak M. A., Welch R. M., Kochian L. V. Physiological Characterization of a Single-Gene Mutant of Pisum sativum Exhibiting Excess Iron Accumulation: I. Root Iron Reduction and Iron Uptake. Plant Physiol. 1990 Jul;93(3):976–981. doi: 10.1104/pp.93.3.976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holden M. J., Luster D. G., Chaney R. L., Buckhout T. J., Robinson C. Fe-Chelate Reductase Activity of Plasma Membranes Isolated from Tomato (Lycopersicon esculentum Mill.) Roots : Comparison of Enzymes from Fe-Deficient and Fe-Sufficient Roots. Plant Physiol. 1991 Oct;97(2):537–544. doi: 10.1104/pp.97.2.537. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kneen B. E., Larue T. A., Welch R. M., Weeden N. F. Pleiotropic Effects of brz: A Mutation in Pisum sativum (L.) cv ;Sparkle' Conditioning Decreased Nodulation and Increased Iron Uptake and Leaf Necrosis. Plant Physiol. 1990 Jun;93(2):717–722. doi: 10.1104/pp.93.2.717. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Landsberg E. C. Function of Rhizodermal Transfer Cells in the Fe Stress Response Mechanism of Capsicum annuum L. Plant Physiol. 1986 Oct;82(2):511–517. doi: 10.1104/pp.82.2.511. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Römheld V., Marschner H. Mechanism of iron uptake by peanut plants : I. Fe reduction, chelate splitting, and release of phenolics. Plant Physiol. 1983 Apr;71(4):949–954. doi: 10.1104/pp.71.4.949. [DOI] [PMC free article] [PubMed] [Google Scholar]
