Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1996 Feb;110(2):355–363. doi: 10.1104/pp.110.2.355

Fructan Accumulation and Sucrose Metabolism in Transgenic Maize Endosperm Expressing a Bacillus amyloliquefaciens SacB Gene.

P G Caimi 1, L M McCole 1, T M Klein 1, P S Kerr 1
PMCID: PMC157728  PMID: 12226187

Abstract

Over 40,000 species of plants accumulate fructan, [beta]-2-1- and [beta]-2-6-linked polymers of fructose as a storage reserve. Due to their high fructose content, several commercial applications for fructans have been proposed. However, plants that accumulate these polymers are not agronomically suited for large-scale cultivation or processing. This study describes the transformation of a Bacillus amyloliquefaciens SacB gene into maize (Zea mays L.) callus by particle bombardment. Tissue-specific expression and targeting of the SacB protein to endosperm vacuoles resulted in stable accumulation of high-molecular-weight fructan in mature seeds. Accumulation of fructan in the vacuole had no detectable effect on kernel development or germination. Fructan levels were found to be approximately 9-fold higher in sh2 mutants compared to wild-type maize kernels. In contrast to vacuole-targeted expression, starch synthesis and endosperm development in mature seeds containing a cytosolically expressed SacB gene were severely affected. The data demonstrate that hexose resulting from cytosolic SacB activity was not utilized for starch synthesis. Transgenic seeds containing a chimeric SacB gene provide further evidence that the dominant pathway for starch synthesis in maize endosperm is through uridine diphosphoglucose catalyzed by the enzyme sucrose synthase.

Full Text

The Full Text of this article is available as a PDF (1.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bednarek S. Y., Wilkins T. A., Dombrowski J. E., Raikhel N. V. A carboxyl-terminal propeptide is necessary for proper sorting of barley lectin to vacuoles of tobacco. Plant Cell. 1990 Dec;2(12):1145–1155. doi: 10.1105/tpc.2.12.1145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bhave M. R., Lawrence S., Barton C., Hannah L. C. Identification and molecular characterization of shrunken-2 cDNA clones of maize. Plant Cell. 1990 Jun;2(6):581–588. doi: 10.1105/tpc.2.6.581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chourey P. S., Taliercio E. W. Epistatic interaction and functional compensation between the two tissue- and cell-specific sucrose synthase genes in maize. Proc Natl Acad Sci U S A. 1994 Aug 16;91(17):7917–7921. doi: 10.1073/pnas.91.17.7917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Creech R G. Genetic Control of Carbohydrate Synthesis in Maize Endosperm. Genetics. 1965 Dec;52(6):1175–1186. doi: 10.1093/genetics/52.6.1175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Doehlert D. C., Kuo T. M., Felker F. C. Enzymes of sucrose and hexose metabolism in developing kernels of two inbreds of maize. Plant Physiol. 1988 Apr;86(4):1013–1019. doi: 10.1104/pp.86.4.1013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ebskamp M. J., van der Meer I. M., Spronk B. A., Weisbeek P. J., Smeekens S. C. Accumulation of fructose polymers in transgenic tobacco. Biotechnology (N Y) 1994 Mar;12(3):272–275. doi: 10.1038/nbt0394-272. [DOI] [PubMed] [Google Scholar]
  7. Felker F. C., Liu K. C., Shannon J. C. Sugar uptake and starch biosynthesis by slices of developing maize endosperm. Plant Physiol. 1990 Nov;94(3):996–1001. doi: 10.1104/pp.94.3.996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fuchs A. Current and potential food and non-food applications of fructans. Biochem Soc Trans. 1991 Aug;19(3):555–560. doi: 10.1042/bst0190555. [DOI] [PubMed] [Google Scholar]
  9. Hannah L. C., Tuschall D. M., Mans R. J. Multiple forms of maize endosperm adp-glucose pyrophosphorylase and their control by shrunken-2 and brittle-2. Genetics. 1980 Aug;95(4):961–970. doi: 10.1093/genetics/95.4.961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Matsuoka K., Matsumoto S., Hattori T., Machida Y., Nakamura K. Vacuolar targeting and posttranslational processing of the precursor to the sweet potato tuberous root storage protein in heterologous plant cells. J Biol Chem. 1990 Nov 15;265(32):19750–19757. [PubMed] [Google Scholar]
  11. Matsuoka K., Nakamura K. Propeptide of a precursor to a plant vacuolar protein required for vacuolar targeting. Proc Natl Acad Sci U S A. 1991 Feb 1;88(3):834–838. doi: 10.1073/pnas.88.3.834. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. McCarty D. R., Shaw J. R., Hannah L. C. The cloning, genetic mapping, and expression of the constitutive sucrose synthase locus of maize. Proc Natl Acad Sci U S A. 1986 Dec;83(23):9099–9103. doi: 10.1073/pnas.83.23.9099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Nagarajan V., Borchert T. V. Levansucrase: a tool to study protein secretion in Bacillus subtilis. Res Microbiol. 1991 Sep-Oct;142(7-8):787–792. doi: 10.1016/0923-2508(91)90056-g. [DOI] [PubMed] [Google Scholar]
  14. Pietrzak M., Shillito R. D., Hohn T., Potrykus I. Expression in plants of two bacterial antibiotic resistance genes after protoplast transformation with a new plant expression vector. Nucleic Acids Res. 1986 Jul 25;14(14):5857–5868. doi: 10.1093/nar/14.14.5857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Schmalstig J. G., Hitz W. D. Transport and Metabolism of a Sucrose Analog (1'-Fluorosucrose) into Zea mays L. Endosperm without Invertase Hydrolysis. Plant Physiol. 1987 Dec;85(4):902–905. doi: 10.1104/pp.85.4.902. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Shannon J. C. Carbon-14 Distribution in Carbohydrates of Immature Zea mays. Kernels Following CO(2) Treatment of Intact Plants. Plant Physiol. 1968 Aug;43(8):1215–1220. doi: 10.1104/pp.43.8.1215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Shannon J. C. Movement of C-Labeled Assimilates into Kernels of Zea mays L: I. Pattern and Rate of Sugar Movement. Plant Physiol. 1972 Feb;49(2):198–202. doi: 10.1104/pp.49.2.198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Zrenner R., Salanoubat M., Willmitzer L., Sonnewald U. Evidence of the crucial role of sucrose synthase for sink strength using transgenic potato plants (Solanum tuberosum L.). Plant J. 1995 Jan;7(1):97–107. doi: 10.1046/j.1365-313x.1995.07010097.x. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES