Abstract
Studies in experimental animals suggest that antibody responses to certain polysaccharide antigens may be restricted in IgG subclass distribution. To determine if human antibodies to pneumococcal polysaccharides are similarly restricted we measured the IgG subclass specific response to immunization with purified polyvalent pneumococcal polysaccharide vaccine. For the type 3 pneumococcal antigen, the geometric mean titre of IgG2 antibody was significantly greater than that of IgG1, IgG3 or IgG4, in both pre-immunization and post-immunization sera. A significant rise in mean titre, comparing pre- to post-immunization sera was observed only for IgG2 antibody. Similar predominance of IgG2 antibody was found for pneumococcal polysaccharides types 6, 18, 19 and 23. In contrast, antibody to the protein antigen tetanus toxoid was exclusively of the IgG1 subclass. Patients with IgA/IgG2 deficiency demonstrated a normal IgG response to tetanus, a normal IgM response to pneumococcal polysaccharides, but no IgG antibody to pneumococcal antigens. IgG2 subclass restriction of antibody to pneumococcal polysaccharides suggest that these antigens may elicit an immune response analogous to the murine type 2 T-cell independent immunogens which show IgG subclass restriction and the requirement of a mature B cell subset defined by the Lyb5+ alloantiserum. Our findings support the possibility of subclass-specific inducing or regulating mechanisms for human responses to carbohydrate or polysaccharide antigens.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Avrameas S. Coupling of enzymes to proteins with glutaraldehyde. Use of the conjugates for the detection of antigens and antibodies. Immunochemistry. 1969 Jan;6(1):43–52. doi: 10.1016/0019-2791(69)90177-3. [DOI] [PubMed] [Google Scholar]
- Baker P. J., Amsbaugh D. F., Stashak P. W., Caldes G., Prescott B. Regulation of the antibody response to pneumococcal polysaccharide by thymus-derived cells. Rev Infect Dis. 1981 Mar-Apr;3(2):332–341. doi: 10.1093/clinids/3.2.332. [DOI] [PubMed] [Google Scholar]
- Baker P. J. Homeostatic control of antibody responses: a model based on the recognition of cell-associated antibody by regulatory T cells. Transplant Rev. 1975;26:3–20. doi: 10.1111/j.1600-065x.1975.tb00172.x. [DOI] [PubMed] [Google Scholar]
- Barrett D. J., Ammann A. J., Stenmark S., Wara D. W. Immunoglobulin G and M antibodies to pneumococcal polysaccharides detected by enzyme-linked immunosorbent assay. Infect Immun. 1980 Feb;27(2):411–417. doi: 10.1128/iai.27.2.411-417.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barrett D. J., Lee C. G., Ammann A. J., Ayoub E. M. IgG and IgM pneumococcal polysaccharide antibody responses in infants. Pediatr Res. 1984 Nov;18(11):1067–1071. doi: 10.1203/00006450-198411000-00001. [DOI] [PubMed] [Google Scholar]
- Barrett D. J., Triggiani M., Ayoub E. M. Assay of antibody to group A streptococcal carbohydrate by enzyme-linked immunosorbent assay. J Clin Microbiol. 1983 Sep;18(3):622–627. doi: 10.1128/jcm.18.3.622-627.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berntsson E., Broholm K. A., Kaijser B. Serological diagnosis of pneumococcal disease with enzyme-linked immunosorbent assay (ELISA). Scand J Infect Dis. 1978;10(3):177–181. doi: 10.3109/inf.1978.10.issue-3.04. [DOI] [PubMed] [Google Scholar]
- Borgoño J. M., McLean A. A., Vella P. P., Woodhour A. F., Canepa I., Davidson W. L., Hilleman M. R. Vaccination and revaccination with polyvalent pneumococcal polysaccharide vaccines in adults and infants. Proc Soc Exp Biol Med. 1978 Jan;157(1):148–154. doi: 10.3181/00379727-157-40010. [DOI] [PubMed] [Google Scholar]
- Carlson A. J., Davidson W. L., McLean A. A., Vella P. P., Weibel R. E., Woodhour A. F., Hilleman M. R. Pneumococcal vaccine: dose, revaccination, and coadministration with influenza vaccine. Proc Soc Exp Biol Med. 1979 Sep;161(4):558–563. doi: 10.3181/00379727-161-40596. [DOI] [PubMed] [Google Scholar]
- Carlson B. A., Giebink G. S., Spika J. S., Gray E. D. Measurement of immunoglobulin G and M antibodies to type 3 pneumococcal capsular polysaccharide by enzyme-linked immunosorbent assay. J Clin Microbiol. 1982 Jul;16(1):63–69. doi: 10.1128/jcm.16.1.63-69.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cowan M. J., Ammann A. J., Wara D. W., Howie V. M., Schultz L., Doyle N., Kaplan M. Pneumococcal polysaccharide immunization in infants and children. Pediatrics. 1978 Nov;62(5):721–727. [PubMed] [Google Scholar]
- Gray B. M. ELISA methodology for polysaccharide antigens: protein coupling of polysaccharides for adsorption to plastic tubes. J Immunol Methods. 1979;28(1-2):187–192. doi: 10.1016/0022-1759(79)90340-5. [DOI] [PubMed] [Google Scholar]
- Hilleman M. R., Carlson A. J., Jr, McLean A. A., Vella P. P., Weibel R. E., Woodhour A. F. Streptococcus pneumoniae polysaccharide vaccine: age and dose responses, safety, persistence of antibody, revaccination, and simultaneous administration of pneumococcal and influenza vaccines. Rev Infect Dis. 1981 Mar-Apr;3 (Suppl):S31–S42. doi: 10.1093/clinids/3.supplement_1.s31. [DOI] [PubMed] [Google Scholar]
- Hosea S. W., Burch C. G., Brown E. J., Berg R. A., Frank M. M. Impaired immune response of splenectomised patients to polyvalent pneumococcal vaccine. Lancet. 1981 Apr 11;1(8224):804–807. doi: 10.1016/s0140-6736(81)92681-7. [DOI] [PubMed] [Google Scholar]
- Johnston R. B., Jr, Anderson P., Rosen F. S., Smith D. H. Characterization of human antibody to polyribophosphate, the capsular antigen of Hemophilus influenzae, type B. Clin Immunol Immunopathol. 1973 Jan;1(2):234–240. doi: 10.1016/0090-1229(73)90024-x. [DOI] [PubMed] [Google Scholar]
- Lane H. C., Volkman D. J., Whalen G., Fauci A. S. In vitro antigen-induced, antigen-specific antibody production in man. Specific and polyclonal components, kinetics, and cellular requirements. J Exp Med. 1981 Oct 1;154(4):1043–1057. doi: 10.1084/jem.154.4.1043. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mond J. J. Use of the T lymphocyte regulated type 2 antigens for the analysis of responsiveness of Lyb5+ and Lyb5- B lymphocytes to T lymphocyte derived factors. Immunol Rev. 1982;64:99–115. doi: 10.1111/j.1600-065x.1982.tb00420.x. [DOI] [PubMed] [Google Scholar]
- Perlmutter R. M., Hansburg D., Briles D. E., Nicolotti R. A., Davie J. M. Subclass restriction of murine anti-carbohydrate antibodies. J Immunol. 1978 Aug;121(2):566–572. [PubMed] [Google Scholar]
- Riesen W. F., Skvaril F., Braun D. G. Natural infection of man with group A streptococci. Levels; restriction in class, subclass, and type; and clonal appearance of polysaccharide-group-specific antibodies. Scand J Immunol. 1976;5(4):383–390. doi: 10.1111/j.1365-3083.1976.tb00292.x. [DOI] [PubMed] [Google Scholar]
- Schur P. H., Rosen F., Norman M. E. Immunoglobulin subclasses in normal children. Pediatr Res. 1979 Mar;13(3):181–183. doi: 10.1203/00006450-197903000-00010. [DOI] [PubMed] [Google Scholar]
- Siber G. R., Ransil B. J. Methods for the analysis of antibody responses to vaccines or other immune stimuli. Methods Enzymol. 1983;93:60–78. doi: 10.1016/s0076-6879(83)93034-3. [DOI] [PubMed] [Google Scholar]
- Siber G. R., Schur P. H., Aisenberg A. C., Weitzman S. A., Schiffman G. Correlation between serum IgG-2 concentrations and the antibody response to bacterial polysaccharide antigens. N Engl J Med. 1980 Jul 24;303(4):178–182. doi: 10.1056/NEJM198007243030402. [DOI] [PubMed] [Google Scholar]
- Stevens R., Dichek D., Keld B., Heiner D. IgG1 is the predominant subclass of in vivo- and in vitro- produced anti-tetanus toxoid antibodies and also serves as the membrane IgG molecule for delivering inhibitory signals to anti-tetanus toxoid antibody-producing B cells. J Clin Immunol. 1983 Jan;3(1):65–69. doi: 10.1007/BF00919140. [DOI] [PubMed] [Google Scholar]
- Zolla S., Goodman J. W. An aggregating immunoglobulin in hyperimmune equine anti-pneumococcal sera. J Immunol. 1968 Apr;100(4):880–897. [PubMed] [Google Scholar]