Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1996 Feb;110(2):471–482. doi: 10.1104/pp.110.2.471

Kinetic Studies on the Xanthophyll Cycle in Barley Leaves (Influence of Antenna Size and Relations to Nonphotochemical Chlorophyll Fluorescence Quenching).

H Hartel 1, H Lokstein 1, B Grimm 1, B Rank 1
PMCID: PMC157742  PMID: 12226199

Abstract

Xanthophyll-cycle kinetics as well as the relationship between the xanthophyll de-epoxidation state and Stern-Volmer type nonphotochemical chlorophyll (Chl) fluorescence quenching (qN) were investigated in barley (Hordeum vulgare L.) leaves comprising a stepwise reduced antenna system. For this purpose plants of the wild type (WT) and the Chl b-less mutant chlorina 3613 were cultivated under either continuous (CL) or intermittent light (IML). Violaxanthin (V) availability varied from about 70% in the WT up to 97 to 98% in the mutant and IML-grown plants. In CL-grown mutant leaves, de-epoxidation rates were strongly accelerated compared to the WT. This is ascribed to a different accessibility of V to the de-epoxidase due to the existence of two V pools: one bound to light-harvesting Chl a/b-binding complexes (LHC) and the other one not bound. Epoxidation rates (k) were decreased with reduction in LHC protein contents: kWT > kmutant >> kIML plants. This supports the idea that the epoxidase activity resides on certain LHC proteins. Irrespective of huge zeaxanthin and antheraxanthin accumulation, the capacity to develop qN was reduced stepwise with antenna size. The qN level obtained in dithiothreitol-treated CL- and IML-grown plants was almost identical with that in untreated IML-grown plants. The findings provide evidence that structural changes within the LHC proteins, mediated by xanthophyll-cycle operation, render the basis for the development of a major proportion of qN.

Full Text

The Full Text of this article is available as a PDF (1.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bassi R., Pineau B., Dainese P., Marquardt J. Carotenoid-binding proteins of photosystem II. Eur J Biochem. 1993 Mar 1;212(2):297–303. doi: 10.1111/j.1432-1033.1993.tb17662.x. [DOI] [PubMed] [Google Scholar]
  2. Gilmore A. M., Hazlett T. L., Govindjee Xanthophyll cycle-dependent quenching of photosystem II chlorophyll a fluorescence: formation of a quenching complex with a short fluorescence lifetime. Proc Natl Acad Sci U S A. 1995 Mar 14;92(6):2273–2277. doi: 10.1073/pnas.92.6.2273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Gilmore A. M., Mohanty N., Yamamoto H. Y. Epoxidation of zeaxanthin and antheraxanthin reverses non-photochemical quenching of photosystem II chlorophyll a fluorescence in the presence of trans-thylakoid delta pH. FEBS Lett. 1994 Aug 22;350(2-3):271–274. doi: 10.1016/0014-5793(94)00784-5. [DOI] [PubMed] [Google Scholar]
  4. Gilmore A. M., Yamamoto H. Y. Zeaxanthin Formation and Energy-Dependent Fluorescence Quenching in Pea Chloroplasts under Artificially Mediated Linear and Cyclic Electron Transport. Plant Physiol. 1991 Jun;96(2):635–643. doi: 10.1104/pp.96.2.635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Grimm B., Kloppstech K. The early light-inducible proteins of barley. Characterization of two families of 2-h-specific nuclear-coded chloroplast proteins. Eur J Biochem. 1987 Sep 15;167(3):493–499. doi: 10.1111/j.1432-1033.1987.tb13364.x. [DOI] [PubMed] [Google Scholar]
  6. Horton P., Ruban A. V., Walters R. G. Regulation of Light Harvesting in Green Plants (Indication by Nonphotochemical Quenching of Chlorophyll Fluorescence). Plant Physiol. 1994 Oct;106(2):415–420. doi: 10.1104/pp.106.2.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Jahns P., Junge W. Dicyclohexylcarbodiimide-binding proteins related to the short circuit of the proton-pumping activity of photosystem II. Identified as light-harvesting chlorophyll-a/b-binding proteins. Eur J Biochem. 1990 Nov 13;193(3):731–736. doi: 10.1111/j.1432-1033.1990.tb19393.x. [DOI] [PubMed] [Google Scholar]
  8. Jahns P. The Xanthophyll Cycle in Intermittent Light-Grown Pea Plants (Possible Functions of Chlorophyll a/b-Binding Proteins). Plant Physiol. 1995 May;108(1):149–156. doi: 10.1104/pp.108.1.149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jansson S. The light-harvesting chlorophyll a/b-binding proteins. Biochim Biophys Acta. 1994 Feb 8;1184(1):1–19. doi: 10.1016/0005-2728(94)90148-1. [DOI] [PubMed] [Google Scholar]
  10. Król M., Spangfort M. D., Huner N. P., Oquist G., Gustafsson P., Jansson S. Chlorophyll a/b-binding proteins, pigment conversions, and early light-induced proteins in a chlorophyll b-less barley mutant. Plant Physiol. 1995 Mar;107(3):873–883. doi: 10.1104/pp.107.3.873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Law M. Y., Charles S. A., Halliwell B. Glutathione and ascorbic acid in spinach (Spinacia oleracea) chloroplasts. The effect of hydrogen peroxide and of Paraquat. Biochem J. 1983 Mar 15;210(3):899–903. doi: 10.1042/bj2100899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lee A. I., Thornber J. P. Analysis of the pigment stoichiometry of pigment-protein complexes from barley (Hordeum vulgare). The xanthophyll cycle intermediates occur mainly in the light-harvesting complexes of photosystem I and photosystem II. Plant Physiol. 1995 Feb;107(2):565–574. doi: 10.1104/pp.107.2.565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Neubauer C., Yamamoto H. Y. Mehler-peroxidase reaction mediates zeaxanthin formation and zeaxanthin-related fluorescence quenching in intact chloroplasts. Plant Physiol. 1992 Aug;99(4):1354–1361. doi: 10.1104/pp.99.4.1354. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Neville D. M., Jr Molecular weight determination of protein-dodecyl sulfate complexes by gel electrophoresis in a discontinuous buffer system. J Biol Chem. 1971 Oct 25;246(20):6328–6334. [PubMed] [Google Scholar]
  15. Pfundel E. E., Renganathan M., Gilmore A. M., Yamamoto H. Y., Dilley R. A. Intrathylakoid pH in Isolated Pea Chloroplasts as Probed by Violaxanthin Deepoxidation. Plant Physiol. 1994 Dec;106(4):1647–1658. doi: 10.1104/pp.106.4.1647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ruban A. V., Young A. J., Pascal A. A., Horton P. The Effects of Illumination on the Xanthophyll Composition of the Photosystem II Light-Harvesting Complexes of Spinach Thylakoid Membranes. Plant Physiol. 1994 Jan;104(1):227–234. doi: 10.1104/pp.104.1.227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Siefermann D., Yamamoto H. Y. Light-induced de-epoxidation of violaxanthin in lettuce chloroPLASTS. III. Reaction kinetics and effect of light intensity on de-epoxidase activity and substrate availability. Biochim Biophys Acta. 1974 Jul 25;357(1):144–150. doi: 10.1016/0005-2728(74)90119-4. [DOI] [PubMed] [Google Scholar]
  18. Siefermann D., Yamamoto H. Y. Properties of NADPH and oxygen-dependent zeaxanthin epoxidation in isolated chloroplasts. A transmembrane model for the violaxanthin cycle. Arch Biochem Biophys. 1975 Nov;171(1):70–77. doi: 10.1016/0003-9861(75)90008-9. [DOI] [PubMed] [Google Scholar]
  19. Walters R. G., Ruban A. V., Horton P. Higher plant light-harvesting complexes LHCIIa and LHCIIc are bound by dicyclohexylcarbodiimide during inhibition of energy dissipation. Eur J Biochem. 1994 Dec 15;226(3):1063–1069. doi: 10.1111/j.1432-1033.1994.01063.x. [DOI] [PubMed] [Google Scholar]
  20. Yamamoto H. Y., Kamite L. The effects of dithiothreitol on violaxanthin de-epoxidation and absorbance changes in the 500-nm region. Biochim Biophys Acta. 1972 Jun 23;267(3):538–543. doi: 10.1016/0005-2728(72)90182-x. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES