Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1996 Feb;110(2):589–598. doi: 10.1104/pp.110.2.589

Ascorbate peroxidase. A prominent membrane protein in oilseed glyoxysomes.

J R Bunkelmann 1, R N Trelease 1
PMCID: PMC157755  PMID: 8742335

Abstract

The glyoxysomes of growing oilseed seedlings produce H2O2, a reactive oxygen species, during the beta-oxidation of lipids stored in the cotyledons. An expression library of dark-grown cotton (Gossypium hirsutm L.) cotyledons was screened with antibodies that recognized a 31-kD glyoxysomal membrane polypeptide. A full-length cDNA clone (1258 bp) was isolated that encodes a 32-kD subunit of ascorbate peroxidase (APX) with a single, putative membrane-spanning region near the C-terminal end of the polypeptide. Internal amino acid sequence analysis of the cotton 31-kD polypeptide verified that this clone encoded this protein. This enzyme, designated gmAPX, was immunocytochemically and enzymatically localized to the glyoxysomal membrane in cotton cotyledons. The activity of monodehydroascorbate reductase, a protein that reduces monodehydroascorbate to ascorbate with NADH, also was detected in these membranes. The co-localization of gmAPX and monodehydroascorbate reductase within the glyoxysomal membrane likely reflects an essential pathway for scavenging reactive oxygen species and also provides a mechanism to regenerate NAD+ for the continued operation of the glyoxylate cycle and beta-oxidation of fatty acids. Immunological cross-reactivity of 30- to 32-kD proteins in glyoxysomal membranes of cucumber, sunflower, castor bean, and cotton indicate that gmAPX is common among oilseed species.

Full Text

The Full Text of this article is available as a PDF (2.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen R. D. Dissection of Oxidative Stress Tolerance Using Transgenic Plants. Plant Physiol. 1995 Apr;107(4):1049–1054. doi: 10.1104/pp.107.4.1049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bioukar E. B., Deschatrette J. Update on genetic and molecular investigations of diseases with general impairment of peroxisomal functions. Biochimie. 1993;75(3-4):303–308. doi: 10.1016/0300-9084(93)90090-f. [DOI] [PubMed] [Google Scholar]
  3. Causeret C., Bentejac M., Bugaut M. Proteins and enzymes of the peroxisomal membrane in mammals. Biol Cell. 1993;77(1):89–104. doi: 10.1016/s0248-4900(05)80178-9. [DOI] [PubMed] [Google Scholar]
  4. Corpas F. J., Bunkelmann J., Trelease R. N. Identification and immunochemical characterization of a family of peroxisome membrane proteins (PMPs) in oilseed glyoxysomes. Eur J Cell Biol. 1994 Dec;65(2):280–290. [PubMed] [Google Scholar]
  5. Dalton D. A., Russell S. A., Hanus F. J., Pascoe G. A., Evans H. J. Enzymatic reactions of ascorbate and glutathione that prevent peroxide damage in soybean root nodules. Proc Natl Acad Sci U S A. 1986 Jun;83(11):3811–3815. doi: 10.1073/pnas.83.11.3811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. De Duve C., Baudhuin P. Peroxisomes (microbodies and related particles). Physiol Rev. 1966 Apr;46(2):323–357. doi: 10.1152/physrev.1966.46.2.323. [DOI] [PubMed] [Google Scholar]
  7. Donaldson R. P. Organelle Membranes from Germinating Castor Bean Endosperm: II. ENZYMES, CYTOCHROMES, AND PERMEABILITY OF THE GLYOXYSOME MEMBRANE. Plant Physiol. 1981 Jan;67(1):21–25. doi: 10.1104/pp.67.1.21. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ishikawa T., Sakai K., Takeda T., Shigeoka S. Cloning and expression of cDNA encoding a new type of ascorbate peroxidase from spinach. FEBS Lett. 1995 Jun 19;367(1):28–32. doi: 10.1016/0014-5793(95)00539-l. [DOI] [PubMed] [Google Scholar]
  9. Jank B., Habermann B., Schweyen R. J., Link T. A. PMP47, a peroxisomal homologue of mitochondrial solute carrier proteins. Trends Biochem Sci. 1993 Nov;18(11):427–428. [PubMed] [Google Scholar]
  10. Jiang L. W., Bunkelmann J., Towill L., Kleff S., Trelease R. N. Identification of Peroxisome Membrane Proteins (PMPs) in Sunflower (Helianthus annuus L.) Cotyledons and Influence of Light on the PMP Developmental Pattern. Plant Physiol. 1994 Sep;106(1):293–302. doi: 10.1104/pp.106.1.293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kamijo K., Taketani S., Yokota S., Osumi T., Hashimoto T. The 70-kDa peroxisomal membrane protein is a member of the Mdr (P-glycoprotein)-related ATP-binding protein superfamily. J Biol Chem. 1990 Mar 15;265(8):4534–4540. [PubMed] [Google Scholar]
  12. Kubo A., Saji H., Tanaka K., Tanaka K., Kondo N. Cloning and sequencing of a cDNA encoding ascorbate peroxidase from Arabidopsis thaliana. Plant Mol Biol. 1992 Feb;18(4):691–701. doi: 10.1007/BF00020011. [DOI] [PubMed] [Google Scholar]
  13. Kunce C. M., Trelease R. N. Heterogeneity of catalase in maturing and germinated cotton seeds. Plant Physiol. 1986 Aug;81(4):1134–1139. doi: 10.1104/pp.81.4.1134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kunce C. M., Trelease R. N., Turley R. B. Purification and biosynthesis of cottonseed (Gossypium hirsutum L.) catalase. Biochem J. 1988 Apr 1;251(1):147–155. doi: 10.1042/bj2510147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  16. Liu H., Tan X., Russell K. A., Veenhuis M., Cregg J. M. PER3, a gene required for peroxisome biogenesis in Pichia pastoris, encodes a peroxisomal membrane protein involved in protein import. J Biol Chem. 1995 May 5;270(18):10940–10951. doi: 10.1074/jbc.270.18.10940. [DOI] [PubMed] [Google Scholar]
  17. Luster D. G., Bowditch M. I., Eldridge K. M., Donaldson R. P. Characterization of membrane-bound electron transport enzymes from castor bean glyoxysomes and endoplasmic reticulum. Arch Biochem Biophys. 1988 Aug 15;265(1):50–61. doi: 10.1016/0003-9861(88)90370-0. [DOI] [PubMed] [Google Scholar]
  18. Matsudaira P. Limited N-terminal sequence analysis. Methods Enzymol. 1990;182:602–613. doi: 10.1016/0076-6879(90)82047-6. [DOI] [PubMed] [Google Scholar]
  19. McCollum D., Monosov E., Subramani S. The pas8 mutant of Pichia pastoris exhibits the peroxisomal protein import deficiencies of Zellweger syndrome cells--the PAS8 protein binds to the COOH-terminal tripeptide peroxisomal targeting signal, and is a member of the TPR protein family. J Cell Biol. 1993 May;121(4):761–774. doi: 10.1083/jcb.121.4.761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mettler I. J., Beevers H. Oxidation of NADH in Glyoxysomes by a Malate-Aspartate Shuttle. Plant Physiol. 1980 Oct;66(4):555–560. doi: 10.1104/pp.66.4.555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Mittler R., Zilinskas B. A. Molecular cloning and nucleotide sequence analysis of a cDNA encoding pea cytosolic ascorbate peroxidase. FEBS Lett. 1991 Sep 9;289(2):257–259. doi: 10.1016/0014-5793(91)81083-k. [DOI] [PubMed] [Google Scholar]
  22. Murthy S. S., Zilinskas B. A. Molecular cloning and characterization of a cDNA encoding pea monodehydroascorbate reductase. J Biol Chem. 1994 Dec 9;269(49):31129–31133. [PubMed] [Google Scholar]
  23. Ni W., Trelease R. N., Eising R. Two temporally synthesized charge subunits interact to form the five isoforms of cottonseed (Gossypium hirsutum) catalase. Biochem J. 1990 Jul 1;269(1):233–238. doi: 10.1042/bj2690233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Schägger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368–379. doi: 10.1016/0003-2697(87)90587-2. [DOI] [PubMed] [Google Scholar]
  25. Shimozawa N., Tsukamoto T., Suzuki Y., Orii T., Shirayoshi Y., Mori T., Fujiki Y. A human gene responsible for Zellweger syndrome that affects peroxisome assembly. Science. 1992 Feb 28;255(5048):1132–1134. doi: 10.1126/science.1546315. [DOI] [PubMed] [Google Scholar]
  26. Sulter G. J., Harder W., Veenhuis M. Structural and functional aspects of peroxisomal membranes in yeasts. FEMS Microbiol Rev. 1993 Aug;11(4):285–296. doi: 10.1111/j.1574-6976.1993.tb00002.x. [DOI] [PubMed] [Google Scholar]
  27. Thorpe G. H., Kricka L. J., Moseley S. B., Whitehead T. P. Phenols as enhancers of the chemiluminescent horseradish peroxidase-luminol-hydrogen peroxide reaction: application in luminescence-monitored enzyme immunoassays. Clin Chem. 1985 Aug;31(8):1335–1341. [PubMed] [Google Scholar]
  28. Tsukamoto T., Miura S., Fujiki Y. Restoration by a 35K membrane protein of peroxisome assembly in a peroxisome-deficient mammalian cell mutant. Nature. 1991 Mar 7;350(6313):77–81. doi: 10.1038/350077a0. [DOI] [PubMed] [Google Scholar]
  29. Van Veldhoven P. P., Just W. W., Mannaerts G. P. Permeability of the peroxisomal membrane to cofactors of beta-oxidation. Evidence for the presence of a pore-forming protein. J Biol Chem. 1987 Mar 25;262(9):4310–4318. [PubMed] [Google Scholar]
  30. Verheyden K., Fransen M., Van Veldhoven P. P., Mannaerts G. P. Presence of small GTP-binding proteins in the peroxisomal membrane. Biochim Biophys Acta. 1992 Aug 10;1109(1):48–54. doi: 10.1016/0005-2736(92)90185-o. [DOI] [PubMed] [Google Scholar]
  31. Webb R. P., Allen R. D. Isolation and characterization of a cDNA for spinach cytosolic ascorbate peroxidase. Plant Physiol. 1995 Jul;108(3):1325–1325. doi: 10.1104/pp.108.3.1325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wolins N. E., Donaldson R. P. Specific binding of the peroxisomal protein targeting sequence to glyoxysomal membranes. J Biol Chem. 1994 Jan 14;269(2):1149–1153. [PubMed] [Google Scholar]
  33. Yamaguchi K., Mori H., Nishimura M. A novel isoenzyme of ascorbate peroxidase localized on glyoxysomal and leaf peroxisomal membranes in pumpkin. Plant Cell Physiol. 1995 Sep;36(6):1157–1162. doi: 10.1093/oxfordjournals.pcp.a078862. [DOI] [PubMed] [Google Scholar]
  34. van Roermund C. W., Elgersma Y., Singh N., Wanders R. J., Tabak H. F. The membrane of peroxisomes in Saccharomyces cerevisiae is impermeable to NAD(H) and acetyl-CoA under in vivo conditions. EMBO J. 1995 Jul 17;14(14):3480–3486. doi: 10.1002/j.1460-2075.1995.tb07354.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. van den Bosch H., Schutgens R. B., Wanders R. J., Tager J. M. Biochemistry of peroxisomes. Annu Rev Biochem. 1992;61:157–197. doi: 10.1146/annurev.bi.61.070192.001105. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES