Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1996 Feb;110(2):611–619. doi: 10.1104/pp.110.2.611

Allelic Analysis of the Maize amylose-extender Locus Suggests That Independent Genes Encode Starch-Branching Enzymes IIa and IIb.

D K Fisher 1, M Gao 1, K N Kim 1, C D Boyer 1, M J Guiltinan 1
PMCID: PMC157757  PMID: 12226207

Abstract

Starch branching enzymes (SBE) catalyze the formation of [alpha]-1,6-glucan linkages in the biosynthesis of starch. Three distinct SBE isoforms have been identified in maize (Zea mays L.) endosperm, SBEI, IIa, and IIb. Independent genes have been identified that encode maize SBEI and IIb; however, it has remained controversial as to whether SBEIIa and IIb result from posttranscriptional processes acting on the product of a single gene or whether they are encoded by separate genes. To investigate this question, we analyzed 16 isogenic lines carrying independent alleles of the maize amylose-extender (ae) locus, the structural gene for SBEIIb. We show that 22 d after pollination ae-B1 endosperm expressed little Sbe2b (ae)-hybridizing transcript, and as expected, ae-B1 endosperm also lacked detectable SBEIIb enzymatic activity. Significantly, we show that ae-B1 endosperm contained SBEIIa enzymatic activity, strongly supporting the hypothesis that endosperm SBEIIa and IIb are encoded by separate genes. Furthermore, we show that in addition to encoding the predominant Sbe2b-hybridizing message expressed in endosperm, the ae gene also encodes the major Sbe2b-like transcript expressed in developing embryos and tassels.

Full Text

The Full Text of this article is available as a PDF (3.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baba T., Kimura K., Mizuno K., Etoh H., Ishida Y., Shida O., Arai Y. Sequence conservation of the catalytic regions of amylolytic enzymes in maize branching enzyme-I. Biochem Biophys Res Commun. 1991 Nov 27;181(1):87–94. doi: 10.1016/s0006-291x(05)81385-3. [DOI] [PubMed] [Google Scholar]
  2. Boyer C. D., Preiss J. Evidence for independent genetic control of the multiple forms of maize endosperm branching enzymes and starch synthases. Plant Physiol. 1981 Jun;67(6):1141–1145. doi: 10.1104/pp.67.6.1141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boyer C. D., Preiss J. Multiple forms of starch branching enzyme of maize: evidence for independent genetic control. Biochem Biophys Res Commun. 1978 Jan 13;80(1):169–175. doi: 10.1016/0006-291x(78)91119-1. [DOI] [PubMed] [Google Scholar]
  4. Burton R. A., Bewley J. D., Smith A. M., Bhattacharyya M. K., Tatge H., Ring S., Bull V., Hamilton W. D., Martin C. Starch branching enzymes belonging to distinct enzyme families are differentially expressed during pea embryo development. Plant J. 1995 Jan;7(1):3–15. doi: 10.1046/j.1365-313x.1995.07010003.x. [DOI] [PubMed] [Google Scholar]
  5. Dang P. L., Boyer C. D. Comparison of soluble starch synthases and branching enzymes from leaves and kernels of normal and amylose-extender maize. Biochem Genet. 1989 Oct;27(9-10):521–532. [PubMed] [Google Scholar]
  6. Fisher D. K., Boyer C. D., Hannah L. C. Starch branching enzyme II from maize endosperm. Plant Physiol. 1993 Jul;102(3):1045–1046. doi: 10.1104/pp.102.3.1045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fisher D. K., Kim K. N., Gao M., Boyer C. D., Guiltinan M. J. A cDNA encoding starch branching enzyme I from maize endosperm. Plant Physiol. 1995 Jul;108(3):1313–1314. doi: 10.1104/pp.108.3.1313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fisher M. B., Boyer C. D. Immunological characterization of maize starch branching enzymes. Plant Physiol. 1983 Jul;72(3):813–816. doi: 10.1104/pp.72.3.813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Giroux M., Smith-White B., Gilmore V., Hannah L. C., Preiss J. The large subunit of the embryo isoform of ADP glucose pyrophosphorylase from maize. Plant Physiol. 1995 Jul;108(3):1333–1334. doi: 10.1104/pp.108.3.1333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hawker J. S., Ozbun J. L., Ozaki H., Greenberg E., Preiss J. Interaction of spinach leaf adenosine diphosphate glucose alpha-1,4-glucan alpha-4-glucosyl transferase and alpha-1,4-glucan, alpha-1,4-glucan-6-glycosyl transferase in synthesis of branched alpha-glucan. Arch Biochem Biophys. 1974 Feb;160(2):530–551. doi: 10.1016/0003-9861(74)90430-5. [DOI] [PubMed] [Google Scholar]
  11. Hedman K. D., Boyer C. D. Allelic studies of the amylose-extender locus of Zea mays L.: levels of the starch branching enzymes. Biochem Genet. 1983 Dec;21(11-12):1217–1222. doi: 10.1007/BF00488473. [DOI] [PubMed] [Google Scholar]
  12. Hedman K. D., Boyer C. D. Gene dosage at the amylose-extender locus of maize: effects on the levels of starch branching enzymes. Biochem Genet. 1982 Jun;20(5-6):483–492. doi: 10.1007/BF00484699. [DOI] [PubMed] [Google Scholar]
  13. Knecht D. A., Dimond R. L. Visualization of antigenic proteins on Western blots. Anal Biochem. 1984 Jan;136(1):180–184. doi: 10.1016/0003-2697(84)90321-x. [DOI] [PubMed] [Google Scholar]
  14. Lanzetta P. A., Alvarez L. J., Reinach P. S., Candia O. A. An improved assay for nanomole amounts of inorganic phosphate. Anal Biochem. 1979 Nov 15;100(1):95–97. doi: 10.1016/0003-2697(79)90115-5. [DOI] [PubMed] [Google Scholar]
  15. McCarty D. R., Shaw J. R., Hannah L. C. The cloning, genetic mapping, and expression of the constitutive sucrose synthase locus of maize. Proc Natl Acad Sci U S A. 1986 Dec;83(23):9099–9103. doi: 10.1073/pnas.83.23.9099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mizuno K., Kimura K., Arai Y., Kawasaki T., Shimada H., Baba T. Starch branching enzymes from immature rice seeds. J Biochem. 1992 Nov;112(5):643–651. doi: 10.1093/oxfordjournals.jbchem.a123953. [DOI] [PubMed] [Google Scholar]
  17. Moore C. W., Creech R. G. Genetic Fine Structure Analysis of the AMYLOSE-EXTENDER Locus in ZEA MAYS L. Genetics. 1972 Apr;70(4):611–619. doi: 10.1093/genetics/70.4.611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Prioul J. L., Jeannette E., Reyss A., Grégory N., Giroux M., Hannah L. C., Causse M. Expression of ADP-glucose pyrophosphorylase in maize (Zea mays L.) grain and source leaf during grain filling. Plant Physiol. 1994 Jan;104(1):179–187. doi: 10.1104/pp.104.1.179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Schiefer S., Lee E. Y.C., Whelan W. J. Multiple forms of starch synthetase in maize varieties as revealed by disc-gel electrophoresis and activity staining. FEBS Lett. 1973 Feb 15;30(1):129–132. doi: 10.1016/0014-5793(73)80634-9. [DOI] [PubMed] [Google Scholar]
  20. Shaw J. R., Ferl R. J., Baier J., St Clair D., Carson C., McCarty D. R., Hannah L. C. Structural features of the maize sus1 gene and protein. Plant Physiol. 1994 Dec;106(4):1659–1665. doi: 10.1104/pp.106.4.1659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Singh B. K., Preiss J. Starch Branching Enzymes from Maize : Immunological Characterization using Polyclonal and Monoclonal Antibodies. Plant Physiol. 1985 Sep;79(1):34–40. doi: 10.1104/pp.79.1.34. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Stinard P. S., Robertson D. S., Schnable P. S. Genetic Isolation, Cloning, and Analysis of a Mutator-Induced, Dominant Antimorph of the Maize amylose extender1 Locus. Plant Cell. 1993 Nov;5(11):1555–1566. doi: 10.1105/tpc.5.11.1555. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES