Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1996 Feb;110(2):665–673. doi: 10.1104/pp.110.2.665

alpha-L-fucosyltransferases from radish primary roots.

H Misawa 1, Y Tsumuraya 1, Y Kaneko 1, Y Hashimoto 1
PMCID: PMC157763  PMID: 8742340

Abstract

A novel alpha-L-fucosyltransferase capable of transferring L-fucose (L-Fuc) from GDP-L-Fuc to the O-2 of alpha-L-arabinofuranosyl residue (GDP-L-Fuc:alpha-L-arabinofuranoside 2-alpha-L-fucosyltransferase) has been found in the microsomal fraction of primary roots from 6-d-old radish (Raphanus sativus L.) seedlings. Enzyme activity was measured fluorometrically at 25 degrees C using a pyridylaminated trisaccharide, L-arabinofuranosylf alpha(1-->3)D-galactopyranosyl beta(1-->6)D-galactose (AraGalGal-PA) as the acceptor. This enzyme found in the microsomal fraction is maximally active at pH 6.8 and requires 0.1% (w/v) Zwittergent 3-16 and 5 mM Mn2+. Chemical and enzymatic analyses of fucosylated AraGalGal-PA confirmed the attachment of L-Fuc to the L-arabinofuranosyl (L-Araf) residue at O-2 by alpha-glycosidic linkage. Radiolabeling was used to assay L-Fuc transfer to L-Araf-containing galacto-oligomers and tamarind xyloglucan. The enzyme specific for the L-Araf residue undergoes development- and organ-specific expression in root tissue, whereas the L-Fuc transfer to tamarind xyloglucan can be detected in microsomal fractions from various organs in developing radish plants. Enzyme assays of membranes fractionated from microsomal fractions revealed that two distinct alpha-L-fucosyltransferases with different acceptor specificity are associated with Golgi membranes from primary roots, whereas hypocotyl Golgi membranes completely lack the enzyme specific for the L-Araf residue.

Full Text

The Full Text of this article is available as a PDF (951.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bowles D. J., Kauss H. Characterization, enzymatic and lectin properties of isolated membranes from Phaseolus aureus. Biochim Biophys Acta. 1976 Sep 7;443(3):360–374. doi: 10.1016/0005-2736(76)90456-9. [DOI] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  3. Camirand A., Brummell D., Maclachlan G. Fucosylation of xyloglucan: localization of the transferase in dictyosomes of pea stem cells. Plant Physiol. 1987 Jul;84(3):753–756. doi: 10.1104/pp.84.3.753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. DISCHE Z., BORENFREUND E. A new color reaction for the determination of aldopentose in presence of other saccharides. Biochim Biophys Acta. 1957 Mar;23(3):639–642. doi: 10.1016/0006-3002(57)90387-6. [DOI] [PubMed] [Google Scholar]
  5. Hanna R., Brummell D. A., Camirand A., Hensel A., Russell E. F., Maclachlan G. A. Solubilization and properties of GDP-fucose: xyloglucan 1,2-alpha-L-fucosyltransferase from pea epicotyl membranes. Arch Biochem Biophys. 1991 Oct;290(1):7–13. doi: 10.1016/0003-9861(91)90584-6. [DOI] [PubMed] [Google Scholar]
  6. Hase S., Ibuki T., Ikenaka T. Reexamination of the pyridylamination used for fluorescence labeling of oligosaccharides and its application to glycoproteins. J Biochem. 1984 Jan;95(1):197–203. doi: 10.1093/oxfordjournals.jbchem.a134585. [DOI] [PubMed] [Google Scholar]
  7. Hodges T. K., Leonard R. T. Purification of a plasma membrane-bound adenosine triphosphatase from plant roots. Methods Enzymol. 1974;32:392–406. doi: 10.1016/0076-6879(74)32039-3. [DOI] [PubMed] [Google Scholar]
  8. Howard D. R., Fukuda M., Fukuda M. N., Stanley P. The GDP-fucose:N-acetylglucosaminide 3-alpha-L-fucosyltransferases of LEC11 and LEC12 Chinese hamster ovary mutants exhibit novel specificities for glycolipid substrates. J Biol Chem. 1987 Dec 15;262(35):16830–16837. [PubMed] [Google Scholar]
  9. James D. W., Jones R. L. Characterization of GDP-Fucose: Polysaccharide Fucosyl Transferase in Corn Roots (Zea mays L.). Plant Physiol. 1979 Dec;64(6):909–913. doi: 10.1104/pp.64.6.909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kikuchi S., Ohinata A., Tsumuraya Y., Hashimoto Y., Kaneko Y., Matsushima H. Production and characterization of antibodies to the beta-(1-->6)-galactotetraosyl group and their interaction with arabinogalactan-proteins. Planta. 1993;190(4):525–535. doi: 10.1007/BF00224792. [DOI] [PubMed] [Google Scholar]
  11. Mandala S., Taiz L. Partial purification of a tonoplast ATPase from corn coleoptiles. Plant Physiol. 1985 Jun;78(2):327–333. doi: 10.1104/pp.78.2.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Sekimata M., Ogura K., Tsumuraya Y., Hashimoto Y., Yamamoto S. A beta-Galactosidase from Radish (Raphanus sativus L.) Seeds. Plant Physiol. 1989 Jun;90(2):567–574. doi: 10.1104/pp.90.2.567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Tsumuraya Y., Mochizuki N., Hashimoto Y., Kovác P. Purification of an exo-beta-(1----3)-D-galactanase of Irpex lacteus (Polyporus tulipiferae) and its action on arabinogalactan-proteins. J Biol Chem. 1990 May 5;265(13):7207–7215. [PubMed] [Google Scholar]
  14. Uesaka E., Sato M., Raiju M., Kaji A. Alpha-l-arabinofuranosidase from Rhodotorula flava. J Bacteriol. 1978 Mar;133(3):1073–1077. doi: 10.1128/jb.133.3.1073-1077.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES