Abstract
Violaxanthin de-epoxidase catalyzes the de-epoxidation of violaxanthin to antheraxanthin and zeaxanthin in the xanthophyll cycle. Its activity is optimal at approximately pH 5.2 and requires ascorbate. In conjunction with the transthylakoid pH gradient, the formation of antheraxanthin and zeaxanthin reduces the photochemical efficiency of photosystem II by increasing the nonradiative (heat) dissipation of energy in the antennae. Previously, violaxanthin de-epoxidase had been partially purified. Here we report its purification from lettuce (Lactuca sativa var Romaine) to one major polypeptide fraction, detectable by two-dimensional isoelectic focusing/sodium dodecyl sulfate-polyacrylamide gel electrophoresis, using anion-exchange chromatography on Mono Q and a novel lipid-affinity precipitation step with monogalactosyldiacylglyceride. The association of violaxanthin de-epoxidase and monogalactosyldiacyglyceride at pH 5.2 is apparently specific, since little enzyme was precipitated by eight other lipids tested. Violaxanthin de-epoxidase has an isoelectric point of 5.4 and an apparent molecular mass of 43 kD. Partial amino acid sequences of the N terminus and tryptic fragments are reported. The peptide sequences are unique in the GenBank data base and suggest that violaxanthin de-epoxidase is nuclear encoded, similar to other chloroplast proteins localized in the lumen.
Full Text
The Full Text of this article is available as a PDF (1.7 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bensadoun A., Weinstein D. Assay of proteins in the presence of interfering materials. Anal Biochem. 1976 Jan;70(1):241–250. doi: 10.1016/s0003-2697(76)80064-4. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Moisyadi S., Harrington H. M. Characterization of the heat shock response in cultured sugarcane cells : I. Physiology of the heat shock response and heat shock protein synthesis. Plant Physiol. 1989 Jul;90(3):1156–1162. doi: 10.1104/pp.90.3.1156. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peter G. F., Thornber J. P. Biochemical composition and organization of higher plant photosystem II light-harvesting pigment-proteins. J Biol Chem. 1991 Sep 5;266(25):16745–16754. [PubMed] [Google Scholar]
- Siefermann D., Yamamoto H. Y. Light-induced de-epoxidation of violaxanthin in lettuce chloroPLASTS. III. Reaction kinetics and effect of light intensity on de-epoxidase activity and substrate availability. Biochim Biophys Acta. 1974 Jul 25;357(1):144–150. doi: 10.1016/0005-2728(74)90119-4. [DOI] [PubMed] [Google Scholar]
- Wolbert R. B., Hilhorst R., Voskuilen G., Nachtegaal H., Dekker M., Van't Riet K., Bijsterbosch B. H. Protein transfer from an aqueous phase into reversed micelles. The effect of protein size and charge distribution. Eur J Biochem. 1989 Oct 1;184(3):627–633. doi: 10.1111/j.1432-1033.1989.tb15059.x. [DOI] [PubMed] [Google Scholar]
- YAMAMOTO H. Y., NAKAYAMA T. O., CHICHESTER C. O. Studies on the light and dark interconversions of leaf xanthophylls. Arch Biochem Biophys. 1962 Apr;97:168–173. doi: 10.1016/0003-9861(62)90060-7. [DOI] [PubMed] [Google Scholar]
- Yamamoto H. Y., Kamite L. The effects of dithiothreitol on violaxanthin de-epoxidation and absorbance changes in the 500-nm region. Biochim Biophys Acta. 1972 Jun 23;267(3):538–543. doi: 10.1016/0005-2728(72)90182-x. [DOI] [PubMed] [Google Scholar]
- Yamamoto H. Y., Kamite L., Wang Y. Y. An Ascorbate-induced Absorbance Change in Chloroplasts from Violaxanthin De-epoxidation. Plant Physiol. 1972 Feb;49(2):224–228. doi: 10.1104/pp.49.2.224. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamamoto M., Kosuda T., Yanagawa H., Tachibana T., Shima K., Hosoda Y., Mikami R., Homma H. Long-term follow-up in sarcoidosis in Japan. Z Erkr Atmungsorgane. 1977 Aug;149(2):191–196. [PubMed] [Google Scholar]