Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1996 Mar;110(3):743–751. doi: 10.1104/pp.110.3.743

Arabidopsis mutants with increased sensitivity to aluminum.

P B Larsen 1, C Y Tai 1, L V Kochian 1, S H Howell 1
PMCID: PMC157772  PMID: 8819866

Abstract

Al-sensitive (als) mutants of Arabidopsis were isolated and characterized with the aim of defining mechanisms of Al toxicity and resistance. Most als mutants selected on the basis of root growth sensitivity to Al were recessive, and together the mutants constituted eight complementation groups. Also, in most als mutants, Al sensitivity appeared to be specific for Al relative to La (another trivalent cation), except als2, which was more sensitive to La than wild type. The tendency of roots on mutant seedlings to accumulate Al was examined by staining with morin and hematoxylin, dyes used to indicate the presence of Al. A significant increase in morin staining was observed in als5, consistent with its increased sensitivity to Al. Unexpectedly, als7 and als4 showed less morin staining, suggesting that the roots on these mutants accumulate less Al than wild type seedlings after exposure to Al-containing solutions. Roots of wild-type seedlings produce callose in response to AlCl3 concentrations that inhibit root growth. Only als5 accumulated more callose than wild type in response to low levels (25 mu M) of AICI3 However, als4 and als7 did not accumulate callose at this AlCl3 concentration even though root growth was significantly inhibited. The lack of callose accumulation in als4 and als7 suggests that there is not an obligatory relationship between callose deposition and Al-induced inhibition of root growth.

Full Text

The Full Text of this article is available as a PDF (2.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bell C. J., Ecker J. R. Assignment of 30 microsatellite loci to the linkage map of Arabidopsis. Genomics. 1994 Jan 1;19(1):137–144. doi: 10.1006/geno.1994.1023. [DOI] [PubMed] [Google Scholar]
  2. Delhaize E., Craig S., Beaton C. D., Bennet R. J., Jagadish V. C., Randall P. J. Aluminum Tolerance in Wheat (Triticum aestivum L.) (I. Uptake and Distribution of Aluminum in Root Apices). Plant Physiol. 1993 Nov;103(3):685–693. doi: 10.1104/pp.103.3.685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Delhaize E., Ryan P. R. Aluminum Toxicity and Tolerance in Plants. Plant Physiol. 1995 Feb;107(2):315–321. doi: 10.1104/pp.107.2.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Delhaize E., Ryan P. R., Randall P. J. Aluminum Tolerance in Wheat (Triticum aestivum L.) (II. Aluminum-Stimulated Excretion of Malic Acid from Root Apices). Plant Physiol. 1993 Nov;103(3):695–702. doi: 10.1104/pp.103.3.695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Grabski S., Schindler M. Aluminum Induces Rigor within the Actin Network of Soybean Cells. Plant Physiol. 1995 Jul;108(3):897–901. doi: 10.1104/pp.108.3.897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Howden R., Goldsbrough P. B., Andersen C. R., Cobbett C. S. Cadmium-sensitive, cad1 mutants of Arabidopsis thaliana are phytochelatin deficient. Plant Physiol. 1995 Apr;107(4):1059–1066. doi: 10.1104/pp.107.4.1059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kinraide T. B., Ryan P. R., Kochian L. V. Interactive effects of Al, h, and other cations on root elongation considered in terms of cell-surface electrical potential. Plant Physiol. 1992 Aug;99(4):1461–1468. doi: 10.1104/pp.99.4.1461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Lander E. S., Green P., Abrahamson J., Barlow A., Daly M. J., Lincoln S. E., Newberg L. A., Newburg L. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics. 1987 Oct;1(2):174–181. doi: 10.1016/0888-7543(87)90010-3. [DOI] [PubMed] [Google Scholar]
  9. Lincoln C., Britton J. H., Estelle M. Growth and development of the axr1 mutants of Arabidopsis. Plant Cell. 1990 Nov;2(11):1071–1080. doi: 10.1105/tpc.2.11.1071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Rauser W. E. Phytochelatins. Annu Rev Biochem. 1990;59:61–86. doi: 10.1146/annurev.bi.59.070190.000425. [DOI] [PubMed] [Google Scholar]
  11. Tice K. R., Parker D. R., Demason D. A. Operationally defined apoplastic and symplastic aluminum fractions in root tips of aluminum-intoxicated wheat. Plant Physiol. 1992 Sep;100(1):309–318. doi: 10.1104/pp.100.1.309. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES