Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1996 Mar;110(3):781–789. doi: 10.1104/pp.110.3.781

Purification and Properties of Flavin- and Molybdenum-Containing Aldehyde Oxidase from Coleoptiles of Maize.

T Koshiba 1, E Saito 1, N Ono 1, N Yamamoto 1, M Sato 1
PMCID: PMC157777  PMID: 12226218

Abstract

Aldehyde oxidase (AO; EC 1.2.3.1) that could oxidize indole-3-acetaldehyde into indole-3-acetic acid was purified approximately 2000-fold from coleoptiles of 3-d-old maize (Zea mays L.) seedlings. The apparent molecular mass of the native enzyme was about 300 kD as estimated by gel-filtration column chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that the enzyme was composed of 150-kD subunits. It contained flavin adenine dinucleotide, iron, and molybdenum as prosthetic groups and had absorption peaks in the visible region (300-600 nm). To our knowledge, this is the first demonstration of the presence of flavin adenine dinucleotide and metals in plant AO. Other aromatic aldehydes such as indole-3-aldehyde and benzaldehyde also served as good substrates, but N-methylnicotinamide, a good substrate for animal AO, was not oxidized. 2-Mercaptoethanol, p-chloromercu-ribenzoate, and iodoacetate partially inhibited the activity, but well-known inhibitors of animal AO, such as menadione and estradiol, caused no reduction in activity. These results indicate that, although maize AO is similar to animal enzymes in molecular mass and cofactor components, it differs in substrate specificity and susceptibility to inhibitors. Immunoblotting analysis with mouse polyclonal antibodies raised against the purified maize AO showed that the enzyme was relatively rich in the apical region of maize coleoptiles. The possible role of this enzyme is discussed in relation to phytohormone biosynthesis in plants.

Full Text

The Full Text of this article is available as a PDF (1.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bauer S. L., Howard P. C. Kinetics and cofactor requirements for the nitroreductive metabolism of 1-nitropyrene and 3-nitrofluoranthene by rabbit liver aldehyde oxidase. Carcinogenesis. 1991 Sep;12(9):1545–1549. doi: 10.1093/carcin/12.9.1545. [DOI] [PubMed] [Google Scholar]
  2. Felsted R. L., Chu A. E., Chaykin S. Purification and properties of the aldehyde oxidases from hog and rabbit livers. J Biol Chem. 1973 Apr 10;248(7):2580–2587. [PubMed] [Google Scholar]
  3. Hall W. W., Krenitsky T. A. Aldehyde oxidase from rabbit liver: specificity toward purines and their analogs. Arch Biochem Biophys. 1986 Nov 15;251(1):36–46. doi: 10.1016/0003-9861(86)90048-2. [DOI] [PubMed] [Google Scholar]
  4. Hirao Y., Kitamura S., Tatsumi K. Epoxide reductase activity of mammalian liver cytosols and aldehyde oxidase. Carcinogenesis. 1994 Apr;15(4):739–743. doi: 10.1093/carcin/15.4.739. [DOI] [PubMed] [Google Scholar]
  5. Huang D. Y., Ichikawa Y. Two different enzymes are primarily responsible for retinoic acid synthesis in rabbit liver cytosol. Biochem Biophys Res Commun. 1994 Dec 15;205(2):1278–1283. doi: 10.1006/bbrc.1994.2803. [DOI] [PubMed] [Google Scholar]
  6. Koshiba T., Matsuyama H. An in Vitro System of Indole-3-Acetic Acid Formation from Tryptophan in Maize (Zea mays) Coleoptile Extracts. Plant Physiol. 1993 Aug;102(4):1319–1324. doi: 10.1104/pp.102.4.1319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Krenitsky T. A., Spector T., Hall W. W. Xanthine oxidase from human liver: purification and characterization. Arch Biochem Biophys. 1986 May 15;247(1):108–119. doi: 10.1016/0003-9861(86)90539-4. [DOI] [PubMed] [Google Scholar]
  8. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  9. Leydecker M. T., Moureaux T., Kraepiel Y., Schnorr K., Caboche M. Molybdenum Cofactor Mutants, Specifically Impaired in Xanthine Dehydrogenase Activity and Abscisic Acid Biosynthesis, Simultaneously Overexpress Nitrate Reductase. Plant Physiol. 1995 Apr;107(4):1427–1431. doi: 10.1104/pp.107.4.1427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. MAHLER H. R., MACKLER B., GREEN D. E. Studies on metalloflavoproteins. III. Aldehyde oxidase: a molybdoflavoprotein. J Biol Chem. 1954 Sep;210(1):465–480. [PubMed] [Google Scholar]
  11. Normanly J., Slovin J. P., Cohen J. D. Rethinking Auxin Biosynthesis and Metabolism. Plant Physiol. 1995 Feb;107(2):323–329. doi: 10.1104/pp.107.2.323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Purves W. K., Brown H. M. Indoleacetaldehyde in cucumber seedlings. Plant Physiol. 1978 Jan;61(1):104–106. doi: 10.1104/pp.61.1.104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. RAJAGOPALAN K. V., FRIDOVICH I., HANDLER P. Hepatic aldehyde oxidase. I. Purification and properties. J Biol Chem. 1962 Mar;237:922–928. [PubMed] [Google Scholar]
  14. Stell J. G., Warne A. J., Lee-Woolley C. Purification of rabbit liver aldehyde oxidase by affinity chromatography on benzamidine sepharose 6B. J Chromatogr. 1989 Jul 28;475:363–372. doi: 10.1016/s0021-9673(01)89690-4. [DOI] [PubMed] [Google Scholar]
  15. Stoddart A. M., Levine W. G. Azoreductase activity by purified rabbit liver aldehyde oxidase. Biochem Pharmacol. 1992 May 28;43(10):2227–2235. doi: 10.1016/0006-2952(92)90182-i. [DOI] [PubMed] [Google Scholar]
  16. Stuehr D. J., Cho H. J., Kwon N. S., Weise M. F., Nathan C. F. Purification and characterization of the cytokine-induced macrophage nitric oxide synthase: an FAD- and FMN-containing flavoprotein. Proc Natl Acad Sci U S A. 1991 Sep 1;88(17):7773–7777. doi: 10.1073/pnas.88.17.7773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Tatsumi K., Ishigai M. Oxime-metabolizing activity of liver aldehyde oxidase. Arch Biochem Biophys. 1987 Mar;253(2):413–418. doi: 10.1016/0003-9861(87)90194-9. [DOI] [PubMed] [Google Scholar]
  18. Tomita S., Tsujita M., Ichikawa Y. Retinal oxidase is identical to aldehyde oxidase. FEBS Lett. 1993 Dec 27;336(2):272–274. doi: 10.1016/0014-5793(93)80818-f. [DOI] [PubMed] [Google Scholar]
  19. Triplett E. W., Blevins D. G., Randall D. D. Purification and properties of soybean nodule xanthine dehydrogenase. Arch Biochem Biophys. 1982 Nov;219(1):39–46. doi: 10.1016/0003-9861(82)90131-x. [DOI] [PubMed] [Google Scholar]
  20. Turner N., Barata B., Bray R. C., Deistung J., Le Gall J., Moura J. J. The molybdenum iron-sulphur protein from Desulfovibrio gigas as a form of aldehyde oxidase. Biochem J. 1987 May 1;243(3):755–761. doi: 10.1042/bj2430755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Walker-Simmons M., Kudrna D. A., Warner R. L. Reduced Accumulation of ABA during Water Stress in a Molybdenum Cofactor Mutant of Barley. Plant Physiol. 1989 Jun;90(2):728–733. doi: 10.1104/pp.90.2.728. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Yoshihara S., Tatsumi K. Guinea pig liver aldehyde oxidase as a sulfoxide reductase: its purification and characterization. Arch Biochem Biophys. 1985 Oct;242(1):213–224. doi: 10.1016/0003-9861(85)90495-3. [DOI] [PubMed] [Google Scholar]
  23. Yoshihara S., Tatsumi K. Kinetic and inhibition studies on reduction of diphenyl sulfoxide by guinea pig liver aldehyde oxidase. Arch Biochem Biophys. 1986 Aug 15;249(1):8–14. doi: 10.1016/0003-9861(86)90554-0. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES