Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1996 Mar;110(3):867–874. doi: 10.1104/pp.110.3.867

Identification and Preliminary Characterization of a Ca2+- Dependent High-Affinity Binding Site for Inositol-1,4,5-Trisphosphate from Chenopodium rubrum.

C H Scanlon 1, J Martinec 1, I Machackova 1, C E Rolph 1, P J Lumsden 1
PMCID: PMC157786  PMID: 12226225

Abstract

Using a radioligand-binding assay we have identified a Ca2+- dependent high-affinity D-myo-inositol-1,4,5-trisphosphate (InsP3) binding site in a membrane vesicle preparation from Chenopodium rubrum. Millimolar concentrations of Ca2+ were required to observe specific binding of [3H]InsP3. A stable equilibrium between bound and free ligand was established within 5 min and bound [3H]InsP3 could be completely displaced by InsP3 in a time- and concentration-dependent manner. Displacement assays indicated a single class of binding sites with an estimated dissociation constant of 142 [plus or minus] 17 nM. Other inositol phosphates bound to the receptor with much lower affinity. The glycosaminoglycan heparin was an effective competitor for the binding site (inhibitor concentration for 50% displacement = 534 nM). ATP at higher, although physiologically relevant, concentrations (inhibitor concentration for 50% displacement = 241 [mu]M) also displaced [3H]InsP3 from the receptor. Recent studies in animals have highlighted the importance of Ca2+ regulation of InsP3-induced Ca2+ release. The potential for the operation of similar regulatory mechanisms in plants is discussed.

Full Text

The Full Text of this article is available as a PDF (846.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berridge M. J. Inositol trisphosphate and calcium signalling. Nature. 1993 Jan 28;361(6410):315–325. doi: 10.1038/361315a0. [DOI] [PubMed] [Google Scholar]
  2. Bethke P. C., Jones R. L. Ca2+-Calmodulin Modulates Ion Channel Activity in Storage Protein Vacuoles of Barley Aleurone Cells. Plant Cell. 1994 Feb;6(2):277–285. doi: 10.1105/tpc.6.2.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Biswas S., Dalal B., Sen M., Biswas B. B. Receptor for myo-inositol trisphosphate from the microsomal fraction of Vigna radiata. Biochem J. 1995 Mar 15;306(Pt 3):631–636. doi: 10.1042/bj3060631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brosnan J. M., Sanders D. Identification and Characterization of High-Affinity Binding Sites for Inositol Trisphosphate in Red Beet. Plant Cell. 1993 Aug;5(8):931–940. doi: 10.1105/tpc.5.8.931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Callamaras N., Parker I. Inositol 1,4,5-trisphosphate receptors in Xenopus laevis oocytes: localization and modulation by Ca2+. Cell Calcium. 1994 Jan;15(1):66–78. doi: 10.1016/0143-4160(94)90105-8. [DOI] [PubMed] [Google Scholar]
  6. Danoff S. K., Ferris C. D., Donath C., Fischer G. A., Munemitsu S., Ullrich A., Snyder S. H., Ross C. A. Inositol 1,4,5-trisphosphate receptors: distinct neuronal and nonneuronal forms derived by alternative splicing differ in phosphorylation. Proc Natl Acad Sci U S A. 1991 Apr 1;88(7):2951–2955. doi: 10.1073/pnas.88.7.2951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Drobak B. K. Plant Phosphoinositides and Intracellular Signaling. Plant Physiol. 1993 Jul;102(3):705–709. doi: 10.1104/pp.102.3.705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Furuichi T., Kohda K., Miyawaki A., Mikoshiba K. Intracellular channels. Curr Opin Neurobiol. 1994 Jun;4(3):294–303. doi: 10.1016/0959-4388(94)90089-2. [DOI] [PubMed] [Google Scholar]
  9. Föhr K. J., Warchol W., Gratzl M. Calculation and control of free divalent cations in solutions used for membrane fusion studies. Methods Enzymol. 1993;221:149–157. doi: 10.1016/0076-6879(93)21014-y. [DOI] [PubMed] [Google Scholar]
  10. Gilroy S., Fricker M. D., Read N. D., Trewavas A. J. Role of Calcium in Signal Transduction of Commelina Guard Cells. Plant Cell. 1991 Apr;3(4):333–344. doi: 10.1105/tpc.3.4.333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gilroy S., Read N. D., Trewavas A. J. Elevation of cytoplasmic calcium by caged calcium or caged inositol triphosphate initiates stomatal closure. Nature. 1990 Aug 23;346(6286):769–771. doi: 10.1038/346769a0. [DOI] [PubMed] [Google Scholar]
  12. Hughes P. J., Michell R. H. Novel inositol containing phospholipids and phosphates: their synthesis and possible new roles in cellular signalling. Curr Opin Neurobiol. 1993 Jun;3(3):383–400. doi: 10.1016/0959-4388(93)90132-i. [DOI] [PubMed] [Google Scholar]
  13. Iino M., Tsukioka M. Feedback control of inositol trisphosphate signalling bycalcium. Mol Cell Endocrinol. 1994 Jan;98(2):141–146. doi: 10.1016/0303-7207(94)90132-5. [DOI] [PubMed] [Google Scholar]
  14. Marshall I. C., Taylor C. W. Two calcium-binding sites mediate the interconversion of liver inositol 1,4,5-trisphosphate receptors between three conformational states. Biochem J. 1994 Jul 15;301(Pt 2):591–598. doi: 10.1042/bj3010591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Mauger J. P., Lièvremont J. P., Piétri-Rouxel F., Hilly M., Coquil J. F. The inositol 1,4,5-trisphosphate receptor: kinetic properties and regulation. Mol Cell Endocrinol. 1994 Jan;98(2):133–139. doi: 10.1016/0303-7207(94)90131-7. [DOI] [PubMed] [Google Scholar]
  16. McAinsh M. R., Brownlee C., Hetherington A. M. Visualizing Changes in Cytosolic-Free Ca2+ during the Response of Stomatal Guard Cells to Abscisic Acid. Plant Cell. 1992 Sep;4(9):1113–1122. doi: 10.1105/tpc.4.9.1113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Pietri F., Hilly M., Mauger J. P. Calcium mediates the interconversion between two states of the liver inositol 1,4,5-trisphosphate receptor. J Biol Chem. 1990 Oct 15;265(29):17478–17485. [PubMed] [Google Scholar]
  18. Poovaiah B. W., Reddy A. S. Calcium and signal transduction in plants. CRC Crit Rev Plant Sci. 1993;12(3):185–211. doi: 10.1080/07352689309701901. [DOI] [PubMed] [Google Scholar]
  19. Ross C. A., Danoff S. K., Schell M. J., Snyder S. H., Ullrich A. Three additional inositol 1,4,5-trisphosphate receptors: molecular cloning and differential localization in brain and peripheral tissues. Proc Natl Acad Sci U S A. 1992 May 15;89(10):4265–4269. doi: 10.1073/pnas.89.10.4265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Taylor C. W., Marshall I. C. Calcium and inositol 1,4,5-trisphosphate receptors: a complex relationship. Trends Biochem Sci. 1992 Oct;17(10):403–407. doi: 10.1016/0968-0004(92)90009-x. [DOI] [PubMed] [Google Scholar]
  21. Walton T. J., Cooke C. J., Newton R. P., Smith C. J. Evidence that generation of inositol 1,4,5-trisphosphate and hydrolysis of phosphatidylinositol 4,5-bisphosphate are rapid responses following addition of fungal elicitor which induces phytoalexin synthesis in lucerne (Medicago sativa) suspension culture cells. Cell Signal. 1993 May;5(3):345–356. doi: 10.1016/0898-6568(93)90026-i. [DOI] [PubMed] [Google Scholar]
  22. Worley P. F., Baraban J. M., Supattapone S., Wilson V. S., Snyder S. H. Characterization of inositol trisphosphate receptor binding in brain. Regulation by pH and calcium. J Biol Chem. 1987 Sep 5;262(25):12132–12136. [PubMed] [Google Scholar]
  23. Wreggett K. A., Irvine R. F. Automated isocratic high-performance liquid chromatography of inositol phosphate isomers. Biochem J. 1989 Sep 15;262(3):997–1000. doi: 10.1042/bj2620997. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES