Abstract
After exposure to a doubled CO2 concentration of 750 [mu]mol mol-1 air for about 3 months glucose and starch in the chlorenchyma of basal cladodes of Opuntia ficus-indica increased 175 and 57%, respectively, compared with the current CO2 concentration of 370 [mu]mol mol-1, but sucrose content was virtually unaffected. Doubling the CO2 concentration increased the nocturnal malate production in basal cladodes by 75%, inorganic phosphate (Pi) by 32%, soluble starch synthase activity by 30%, and sucrose-Pi synthase activity by 146%, but did not affect the activity of hexokinase. Doubling CO2 accelerated phloem transport of sucrose out of the basal cladodes, resulting in a 73% higher dry weight for the daughter cladodes. Doubling CO2 increased the glucose content in 14-d-old daughter cladodes by 167%, increased nocturnal malate production by 22%, decreased total amino acid content by 61%, and increased soluble starch synthase activity by 30% and sucrose synthase activity by 62%. No downward acclimation of photosynthesis during long-term exposure to elevated CO2 concentrations occurs for O. ficus-indica (M. Cui, P.M. Miller, P.S. Nobel [1993] Plant Physiol 103: 519-524; P.S. Nobel, A.A. Israel [1994] J Exp Bot 45: 295-303), consistent with its higher source capacity and sink strength than under current CO2. These changes apparently do not result in Pi limitation of photosynthesis or suppression of genes governing photosynthesis for this perennial Crassulacean acid metabolism species, as occur for some annual crops.
Full Text
The Full Text of this article is available as a PDF (984.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Chen J., Baithun S. I., Pollock D. J., Berry C. L. Argyrophilic and hormone immunoreactive cells in normal and hyperplastic pancreatic ducts and exocrine pancreatic carcinoma. Virchows Arch A Pathol Anat Histopathol. 1988;413(5):399–405. doi: 10.1007/BF00716988. [DOI] [PubMed] [Google Scholar]
- Fisher D. B., Wang N. A Kinetic and Microautoradiographic Analysis of [14C]Sucrose Import by Developing Wheat Grains. Plant Physiol. 1993 Feb;101(2):391–398. doi: 10.1104/pp.101.2.391. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldschmidt E. E., Huber S. C. Regulation of photosynthesis by end-product accumulation in leaves of plants storing starch, sucrose, and hexose sugars. Plant Physiol. 1992 Aug;99(4):1443–1448. doi: 10.1104/pp.99.4.1443. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huber S. C., Huber J. L. Role of sucrose-phosphate synthase in sucrose metabolism in leaves. Plant Physiol. 1992 Aug;99(4):1275–1278. doi: 10.1104/pp.99.4.1275. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jones M. G., Outlaw W. H., Lowry O. H. Enzymic assay of 10 to 10 moles of sucrose in plant tissues. Plant Physiol. 1977 Sep;60(3):379–383. doi: 10.1104/pp.60.3.379. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu S., Teskey R. O. Responses of foliar gas exchange to long-term elevated CO(2) concentrations in mature loblolly pine trees. Tree Physiol. 1995 Jun;15(6):351–359. doi: 10.1093/treephys/15.6.351. [DOI] [PubMed] [Google Scholar]
- MOORE S., STEIN W. H. A modified ninhydrin reagent for the photometric determination of amino acids and related compounds. J Biol Chem. 1954 Dec;211(2):907–913. [PubMed] [Google Scholar]
- Nie G., Hendrix D. L., Webber A. N., Kimball B. A., Long S. P. Increased Accumulation of Carbohydrates and Decreased Photosynthetic Gene Transcript Levels in Wheat Grown at an Elevated CO2 Concentration in the Field. Plant Physiol. 1995 Jul;108(3):975–983. doi: 10.1104/pp.108.3.975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nobel P. S., Hartsock T. L. Relationships between Photosynthetically Active Radiation, Nocturnal Acid Accumulation, and CO(2) Uptake for a Crassulacean Acid Metabolism Plant, Opuntia ficus-indica. Plant Physiol. 1983 Jan;71(1):71–75. doi: 10.1104/pp.71.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peet M. M., Huber S. C., Patterson D. T. Acclimation to High CO(2) in Monoecious Cucumbers : II. Carbon Exchange Rates, Enzyme Activities, and Starch and Nutrient Concentrations. Plant Physiol. 1986 Jan;80(1):63–67. doi: 10.1104/pp.80.1.63. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sasek T. W., Delucia E. H., Strain B. R. Reversibility of Photosynthetic Inhibition in Cotton after Long-Term Exposure to Elevated CO(2) Concentrations. Plant Physiol. 1985 Jul;78(3):619–622. doi: 10.1104/pp.78.3.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Servaites J. C., Geiger D. R., Tucci M. A., Fondy B. R. Leaf Carbon Metabolism and Metabolite Levels during a Period of Sinusoidal Light. Plant Physiol. 1989 Feb;89(2):403–408. doi: 10.1104/pp.89.2.403. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sharkey T. D., Vanderveer P. J. Stromal Phosphate Concentration Is Low during Feedback Limited Photosynthesis. Plant Physiol. 1989 Oct;91(2):679–684. doi: 10.1104/pp.91.2.679. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Somani B. L., Khanade J., Sinha R. A modified anthrone-sulfuric acid method for the determination of fructose in the presence of certain proteins. Anal Biochem. 1987 Dec;167(2):327–330. doi: 10.1016/0003-2697(87)90172-2. [DOI] [PubMed] [Google Scholar]
- Sung S. J., Xu D. P., Black C. C. Identification of actively filling sucrose sinks. Plant Physiol. 1989 Apr;89(4):1117–1121. doi: 10.1104/pp.89.4.1117. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yelle S., Beeson R. C., Trudel M. J., Gosselin A. Acclimation of Two Tomato Species to High Atmospheric CO(2): I. Sugar and Starch Concentrations. Plant Physiol. 1989 Aug;90(4):1465–1472. doi: 10.1104/pp.90.4.1465. [DOI] [PMC free article] [PubMed] [Google Scholar]