Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1996 Mar;110(3):933–943. doi: 10.1104/pp.110.3.933

Gravitropic response of inflorescence stems in Arabidopsis thaliana.

H Fukaki 1, H Fujisawa 1, M Tasaka 1
PMCID: PMC157793  PMID: 8819870

Abstract

We have characterized the gravitropic response of inflorescence stems in Arabidopsis thaliana. When the inflorescence stems were placed horizontally, they curved upward about 90 degrees within 90 min in darkness at 23 degrees C, exhibiting strong negative gravitropism. Decapitated stem segments (without all flowers, flower buds, and apical apices) also showed gravitropic responses when they included the elongation zone. This result indicates that the minimum elements needed for the gravitropic response exist in the decapitated inflorescence stem segments. At least the 3-min gravistimulation time was sufficient to induce the initial curvature at 23 degrees C after a lag time of about 30 min. In the gravitropic response of inflorescence stems, (a) the gravity perception site exists through the elongating zone, (b) auxin is involved in this response, (c) the gravitropic curvature was inhibited at 4 degrees C but at least the gravity perception step could occur, and (d) two curvatures could be induced in sequence at 23 degrees C by two opposite directional horizontal gravistimulations at 4 degrees C.

Full Text

The Full Text of this article is available as a PDF (2.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bandurski R. S., Schulze A., Dayanandan P., Kaufman P. B. Response to gravity by Zea mays seedlings. I. Time course of the response. Plant Physiol. 1984;74:284–288. doi: 10.1104/pp.74.2.284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bullen B. L., Best T. R., Gregg M. M., Barsel S-E, Poff K. L. A direct screening procedure for gravitropism mutants in Arabidopsis thaliana (L.) Heynh. Plant Physiol. 1990;93:525–531. doi: 10.1104/pp.93.2.525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Caspar T., Pickard B. G. Gravitropism in a starchless mutant of Arabidopsis: implications for the starch-statolith theory of gravity sensing. Planta. 1989;177:185–197. [PubMed] [Google Scholar]
  4. Fukaki H., Fujisawa H., Tasaka M. SGR1, SGR2, SGR3: novel genetic loci involved in shoot gravitropism in Arabidopsis thaliana. Plant Physiol. 1996 Mar;110(3):945–955. doi: 10.1104/pp.110.3.945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gillespie B., Thimann K. V. Transport & Distribution of Auxin during Tropistic Response. I. The Lateral Migration of Auxin in Geotropism. Plant Physiol. 1963 Mar;38(2):214–225. doi: 10.1104/pp.38.2.214. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Harrison M. A., Pickard B. G. Auxin asymmetry during gravitropism by tomato hypocotyls. Plant Physiol. 1989;89:652–657. doi: 10.1104/pp.89.2.652. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hart J. W., Macdonald I. R. Is there a role for the apex in shoot geotropism? Plant Physiol. 1984 Feb;74(2):272–277. doi: 10.1104/pp.74.2.272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hatfield R. D., Lamotte C. E. IAA-Induced Growth Responses of Decapitated Corn Seedlings: Indications of Two Apparent Adaptations with a Possible Role in Gravitropism. Plant Physiol. 1984 Feb;74(2):302–306. doi: 10.1104/pp.74.2.302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hobbie L., Estelle M. The axr4 auxin-resistant mutants of Arabidopsis thaliana define a gene important for root gravitropism and lateral root initiation. Plant J. 1995 Feb;7(2):211–220. doi: 10.1046/j.1365-313x.1995.7020211.x. [DOI] [PubMed] [Google Scholar]
  10. Hou Y., Von Arnim A. G., Deng X. W. A New Class of Arabidopsis Constitutive Photomorphogenic Genes Involved in Regulating Cotyledon Development. Plant Cell. 1993 Mar;5(3):329–339. doi: 10.1105/tpc.5.3.329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ishikawa H., Hasenstein K. H., Evans M. L. Computer-based video digitizer analysis of surface extension in maize roots: kinetics of growth rate changes during gravitropism. Planta. 1991 Feb;183(3):381–390. doi: 10.1007/BF00197737. [DOI] [PubMed] [Google Scholar]
  12. Khurana J. P., Best T. R., Poff K. L. Influence of hook position on phototropic and gravitropic curvature by etiolated hypocotyls of Arabidopsis thaliana. Plant Physiol. 1989;90:376–379. doi: 10.1104/pp.90.2.376. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Liscum E., Hangarter R. P. Genetic Evidence That the Red-Absorbing Form of Phytochrome B Modulates Gravitropism in Arabidopsis thaliana. Plant Physiol. 1993 Sep;103(1):15–19. doi: 10.1104/pp.103.1.15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Moore R., Evans M. L. How roots perceive and respond to gravity. Am J Bot. 1986 Apr;73(4):574–587. [PubMed] [Google Scholar]
  15. Poovaiah B. W., McFadden J. J., Reddy A. S. The role of calcium ions in gravity signal perception and transduction. Physiol Plant. 1987;71:401–407. doi: 10.1111/j.1399-3054.1987.tb04363.x. [DOI] [PubMed] [Google Scholar]
  16. Roman G., Lubarsky B., Kieber J. J., Rothenberg M., Ecker J. R. Genetic analysis of ethylene signal transduction in Arabidopsis thaliana: five novel mutant loci integrated into a stress response pathway. Genetics. 1995 Mar;139(3):1393–1409. doi: 10.1093/genetics/139.3.1393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sack F. D. Plant gravity sensing. Int Rev Cytol. 1991;127:193–252. doi: 10.1016/s0074-7696(08)60695-6. [DOI] [PubMed] [Google Scholar]
  18. Simmons C., Migliaccio F., Masson P., Caspar T., Soll D. A novel root gravitropism mutant of Arabidopsis thaliana exhibiting altered auxin physiology. Physiol Plant. 1995;93:790–798. [PubMed] [Google Scholar]
  19. Stinemetz C. L., Kuzmanoff K. M., Evans M. L., Jarrett H. W. Correlation between calmodulin activity and gravitropic sensitivity in primary roots of maize. Plant Physiol. 1987;84:1337–1342. doi: 10.1104/pp.84.4.1337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Wilson A. K., Pickett F. B., Turner J. C., Estelle M. A dominant mutation in Arabidopsis confers resistance to auxin, ethylene and abscisic acid. Mol Gen Genet. 1990 Jul;222(2-3):377–383. doi: 10.1007/BF00633843. [DOI] [PubMed] [Google Scholar]
  21. Wyatt R. E., Ainley W. M., Nagao R. T., Conner T. W., Key J. L. Expression of the Arabidopsis AtAux2-11 auxin-responsive gene in transgenic plants. Plant Mol Biol. 1993 Aug;22(5):731–749. doi: 10.1007/BF00027361. [DOI] [PubMed] [Google Scholar]
  22. Young L. M., Evans M. L., Hertel R. Correlations between gravitropic curvature and auxin movement across gravistimulated roots of Zea mays. Plant Physiol. 1990;92:792–796. doi: 10.1104/pp.92.3.792. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES