Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1996 Mar;110(3):945–955. doi: 10.1104/pp.110.3.945

SGR1, SGR2, SGR3: novel genetic loci involved in shoot gravitropism in Arabidopsis thaliana.

H Fukaki 1, H Fujisawa 1, M Tasaka 1
PMCID: PMC157794  PMID: 8819871

Abstract

In higher plants shoots show a negative gravitropic response but little is known about its mechanism. To elucidate this phenomenon, we have isolated a number of mutants with abnormal shoot gravitropic responses in Arabidopsis thaliana. Here we describe mainly three mutants: sgr1-1, sgr2-1, and sgr3-1 (shoot gravitropism). Genetic analysis confirmed that these mutations were recessive and occurred at three independent loci, named SGR1, SGR2, and SGR3, respectively. In wild type, both inflorescence stems and hypocotyls show negative gravitropic responses. The sgr1-1 mutants showed no response to gravity either by inflorescence stems or by hypocotyls. The sgr2-1 mutants also showed no gravitropic response in inflorescence stems but showed a reduced gravitropic response in hypocotyls. In contrast, the sgr3-1 mutant was found to have reduced gravitropic responses in inflorescence stems but normal gravitropic responses in hypocotyls. These results suggest that some genetic components of the regulatory mechanisms for gravitropic responses are common between inflorescence stems and hypocotyls, but others are not. In addition, these sgr mutants were normal with respect to root gravitropism, and their inflorescence stems and hypocotyls could carry out phototropism. We conclude that SGR1, SGR2, and SGR3 are novel genetic loci specifically involved in the regulatory mechanisms of shoot gravitropism in A. thaliana.

Full Text

The Full Text of this article is available as a PDF (3.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baskin T. I., Briggs W. R., Iino M. Can lateral redistribution of auxin account for phototropism of maize coleoptiles? Plant Physiol. 1986 May;81(1):306–309. doi: 10.1104/pp.81.1.306. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bullen B. L., Best T. R., Gregg M. M., Barsel S-E, Poff K. L. A direct screening procedure for gravitropism mutants in Arabidopsis thaliana (L.) Heynh. Plant Physiol. 1990;93:525–531. doi: 10.1104/pp.93.2.525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Caspar T., Pickard B. G. Gravitropism in a starchless mutant of Arabidopsis: implications for the starch-statolith theory of gravity sensing. Planta. 1989;177:185–197. [PubMed] [Google Scholar]
  4. Feldman L. J. Root gravitropism. Physiol Plant. 1985;65:341–344. doi: 10.1111/j.1399-3054.1985.tb02405.x. [DOI] [PubMed] [Google Scholar]
  5. Fukaki H., Fujisawa H., Tasaka M. Gravitropic response of inflorescence stems in Arabidopsis thaliana. Plant Physiol. 1996 Mar;110(3):933–943. doi: 10.1104/pp.110.3.933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gaiser J. C., Lomax T. L. The altered gravitropic response of the lazy-2 mutant of tomato is phytochrome regulated. Plant Physiol. 1993 Jun;102(2):339–344. doi: 10.1104/pp.102.2.339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Harrison M. A., Pickard B. G. Auxin asymmetry during gravitropism by tomato hypocotyls. Plant Physiol. 1989;89:652–657. doi: 10.1104/pp.89.2.652. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hobbie L., Estelle M. The axr4 auxin-resistant mutants of Arabidopsis thaliana define a gene important for root gravitropism and lateral root initiation. Plant J. 1995 Feb;7(2):211–220. doi: 10.1046/j.1365-313x.1995.7020211.x. [DOI] [PubMed] [Google Scholar]
  9. Hou Y., Von Arnim A. G., Deng X. W. A New Class of Arabidopsis Constitutive Photomorphogenic Genes Involved in Regulating Cotyledon Development. Plant Cell. 1993 Mar;5(3):329–339. doi: 10.1105/tpc.5.3.329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Khurana J. P., Best T. R., Poff K. L. Influence of hook position on phototropic and gravitropic curvature by etiolated hypocotyls of Arabidopsis thaliana. Plant Physiol. 1989;90:376–379. doi: 10.1104/pp.90.2.376. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Khurana J. P., Poff K. L. Mutants of Arabidopsis thaliana with altered phototropism. Planta. 1989;178:400–406. [PubMed] [Google Scholar]
  12. Leyser H. M., Lincoln C. A., Timpte C., Lammer D., Turner J., Estelle M. Arabidopsis auxin-resistance gene AXR1 encodes a protein related to ubiquitin-activating enzyme E1. Nature. 1993 Jul 8;364(6433):161–164. doi: 10.1038/364161a0. [DOI] [PubMed] [Google Scholar]
  13. Lincoln C., Britton J. H., Estelle M. Growth and development of the axr1 mutants of Arabidopsis. Plant Cell. 1990 Nov;2(11):1071–1080. doi: 10.1105/tpc.2.11.1071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Liscum E., Hangarter R. P. Genetic Evidence That the Red-Absorbing Form of Phytochrome B Modulates Gravitropism in Arabidopsis thaliana. Plant Physiol. 1993 Sep;103(1):15–19. doi: 10.1104/pp.103.1.15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Mirza J. I. The Effects of Light and Gravity on the Horizontal Curvature of Roots of Gravitropic and Agravitropic Arabidopsis thaliana L. Plant Physiol. 1987 Jan;83(1):118–120. doi: 10.1104/pp.83.1.118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Pickett F. B., Wilson A. K., Estelle M. The aux1 Mutation of Arabidopsis Confers Both Auxin and Ethylene Resistance. Plant Physiol. 1990 Nov;94(3):1462–1466. doi: 10.1104/pp.94.3.1462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Roman G., Lubarsky B., Kieber J. J., Rothenberg M., Ecker J. R. Genetic analysis of ethylene signal transduction in Arabidopsis thaliana: five novel mutant loci integrated into a stress response pathway. Genetics. 1995 Mar;139(3):1393–1409. doi: 10.1093/genetics/139.3.1393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sack F. D. Plant gravity sensing. Int Rev Cytol. 1991;127:193–252. doi: 10.1016/s0074-7696(08)60695-6. [DOI] [PubMed] [Google Scholar]
  19. Simmons C., Migliaccio F., Masson P., Caspar T., Soll D. A novel root gravitropism mutant of Arabidopsis thaliana exhibiting altered auxin physiology. Physiol Plant. 1995;93:790–798. [PubMed] [Google Scholar]
  20. West MAL., Harada J. J. Embryogenesis in Higher Plants: An Overview. Plant Cell. 1993 Oct;5(10):1361–1369. doi: 10.1105/tpc.5.10.1361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Wilson A. K., Pickett F. B., Turner J. C., Estelle M. A dominant mutation in Arabidopsis confers resistance to auxin, ethylene and abscisic acid. Mol Gen Genet. 1990 Jul;222(2-3):377–383. doi: 10.1007/BF00633843. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES