Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1996 Mar;110(3):1021–1028. doi: 10.1104/pp.110.3.1021

Characterization of the cDNA and gene coding for the biotin synthase of Arabidopsis thaliana.

L M Weaver 1, F Yu 1, E S Wurtele 1, B J Nikolau 1
PMCID: PMC157803  PMID: 8819873

Abstract

Biotin, an essential cofactor, is synthesized de novo only by plants and some microbes. An Arabidopsis thaliana expressed sequence tag that shows sequence similarity to the carboxyl end of biotin synthase from Escherichia coli was used to isolate a near-full-length cDNA. This cDNA was shown to code for the Arabidopsis biotin synthase by its ability to complement a bioB mutant of E. coli. Site-specific mutagenesis indicates that residue threonine-173, which is highly conserved in biotin synthases, is important for catalytic competence of the enzyme. The primary sequence of the Arabidopsis biotin synthase is most similar to biotin synthases from E. coli, Serratia marcescens, and Saccharomyces cerevisiae (about 50% sequence identity) and more distantly related to the Bacillus sphaericus enzyme (33% sequence identity). The primary sequence of the amino terminus of the Arabidopsis biotin synthase may represent an organelle-targeting transit peptide. The single Arabidopsis gene coding for biotin synthase, BIO2, was isolated and sequenced. The biotin synthase coding sequence is interrupted by five introns. The gene sequence upstream of the translation start site has several unusual features, including imperfect palindromes and polypyrimidine sequences, which may function in the transcriptional regulation of the BIO2 gene.

Full Text

The Full Text of this article is available as a PDF (1.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alban C., Baldet P., Douce R. Localization and characterization of two structurally different forms of acetyl-CoA carboxylase in young pea leaves, of which one is sensitive to aryloxyphenoxypropionate herbicides. Biochem J. 1994 Jun 1;300(Pt 2):557–565. doi: 10.1042/bj3000557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Attardi G., Schatz G. Biogenesis of mitochondria. Annu Rev Cell Biol. 1988;4:289–333. doi: 10.1146/annurev.cb.04.110188.001445. [DOI] [PubMed] [Google Scholar]
  3. Baldet P., Alban C., Axiotis S., Douce R. Characterization of biotin and 3-methylcrotonyl-coenzyme a carboxylase in higher plant mitochondria. Plant Physiol. 1992 Jun;99(2):450–455. doi: 10.1104/pp.99.2.450. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baldet P., Gerbling H., Axiotis S., Douce R. Biotin biosynthesis in higher plant cells. Identification of intermediates. Eur J Biochem. 1993 Oct 1;217(1):479–485. doi: 10.1111/j.1432-1033.1993.tb18267.x. [DOI] [PubMed] [Google Scholar]
  5. Brosius J., Erfle M., Storella J. Spacing of the -10 and -35 regions in the tac promoter. Effect on its in vivo activity. J Biol Chem. 1985 Mar 25;260(6):3539–3541. [PubMed] [Google Scholar]
  6. Choi J. K., Yu F., Wurtele E. S., Nikolau B. J. Molecular cloning and characterization of the cDNA coding for the biotin-containing subunit of the chloroplastic acetyl-coenzyme A carboxylase. Plant Physiol. 1995 Oct;109(2):619–625. doi: 10.1104/pp.109.2.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cronan J. E., Jr The E. coli bio operon: transcriptional repression by an essential protein modification enzyme. Cell. 1989 Aug 11;58(3):427–429. doi: 10.1016/0092-8674(89)90421-2. [DOI] [PubMed] [Google Scholar]
  8. Hayden M. A., Huang I., Bussiere D. E., Ashley G. W. The biosynthesis of lipoic acid. Cloning of lip, a lipoate biosynthetic locus of Escherichia coli. J Biol Chem. 1992 May 15;267(14):9512–9515. [PubMed] [Google Scholar]
  9. Ifuku O., Kishimoto J., Haze S., Yanagi M., Fukushima S. Conversion of dethiobiotin to biotin in cell-free extracts of Escherichia coli. Biosci Biotechnol Biochem. 1992 Nov;56(11):1780–1785. doi: 10.1271/bbb.56.1780. [DOI] [PubMed] [Google Scholar]
  10. Ifuku O., Koga N., Haze S., Kishimoto J., Arai T., Wachi Y. Molecular analysis of growth inhibition caused by overexpression of the biotin operon in Escherichia coli. Biosci Biotechnol Biochem. 1995 Feb;59(2):184–189. doi: 10.1271/bbb.59.184. [DOI] [PubMed] [Google Scholar]
  11. Joerger R. D., Bishop P. E. Nucleotide sequence and genetic analysis of the nifB-nifQ region from Azotobacter vinelandii. J Bacteriol. 1988 Apr;170(4):1475–1487. doi: 10.1128/jb.170.4.1475-1487.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Joshi C. P. An inspection of the domain between putative TATA box and translation start site in 79 plant genes. Nucleic Acids Res. 1987 Aug 25;15(16):6643–6653. doi: 10.1093/nar/15.16.6643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Knowles J. R. The mechanism of biotin-dependent enzymes. Annu Rev Biochem. 1989;58:195–221. doi: 10.1146/annurev.bi.58.070189.001211. [DOI] [PubMed] [Google Scholar]
  14. Kunkel T. A., Roberts J. D., Zakour R. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 1987;154:367–382. doi: 10.1016/0076-6879(87)54085-x. [DOI] [PubMed] [Google Scholar]
  15. Otsuka A. J., Buoncristiani M. R., Howard P. K., Flamm J., Johnson C., Yamamoto R., Uchida K., Cook C., Ruppert J., Matsuzaki J. The Escherichia coli biotin biosynthetic enzyme sequences predicted from the nucleotide sequence of the bio operon. J Biol Chem. 1988 Dec 25;263(36):19577–19585. [PubMed] [Google Scholar]
  16. Reed K. E., Cronan J. E., Jr Lipoic acid metabolism in Escherichia coli: sequencing and functional characterization of the lipA and lipB genes. J Bacteriol. 1993 Mar;175(5):1325–1336. doi: 10.1128/jb.175.5.1325-1336.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sakurai N., Imai Y., Masuda M., Komatsubara S., Tosa T. Molecular breeding of a biotin-hyperproducing Serratia marcescens strain. Appl Environ Microbiol. 1993 Oct;59(10):3225–3232. doi: 10.1128/aem.59.10.3225-3232.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Schneider T., Dinkins R., Robinson K., Shellhammer J., Meinke D. W. An embryo-lethal mutant of Arabidopsis thaliana is a biotin auxotroph. Dev Biol. 1989 Jan;131(1):161–167. doi: 10.1016/s0012-1606(89)80047-8. [DOI] [PubMed] [Google Scholar]
  19. Shellhammer J., Meinke D. Arrested Embryos from the bio1 Auxotroph of Arabidopsis thaliana Contain Reduced Levels of Biotin. Plant Physiol. 1990 Jul;93(3):1162–1167. doi: 10.1104/pp.93.3.1162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Shorrosh B. S., Dixon R. A., Ohlrogge J. B. Molecular cloning, characterization, and elicitation of acetyl-CoA carboxylase from alfalfa. Proc Natl Acad Sci U S A. 1994 May 10;91(10):4323–4327. doi: 10.1073/pnas.91.10.4323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Song J., Wurtele E. S., Nikolau B. J. Molecular cloning and characterization of the cDNA coding for the biotin-containing subunit of 3-methylcrotonoyl-CoA carboxylase: identification of the biotin carboxylase and biotin-carrier domains. Proc Natl Acad Sci U S A. 1994 Jun 21;91(13):5779–5783. doi: 10.1073/pnas.91.13.5779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Wells R. D., Collier D. A., Hanvey J. C., Shimizu M., Wohlrab F. The chemistry and biology of unusual DNA structures adopted by oligopurine.oligopyrimidine sequences. FASEB J. 1988 Nov;2(14):2939–2949. [PubMed] [Google Scholar]
  23. Yanai Y., Kawasaki T., Shimada H., Wurtele E. S., Nikolau B. J., Ichikawa N. Genomic organization of 251 kDa acetyl-CoA carboxylase genes in Arabidopsis: tandem gene duplication has made two differentially expressed isozymes. Plant Cell Physiol. 1995 Jul;36(5):779–787. doi: 10.1093/oxfordjournals.pcp.a078822. [DOI] [PubMed] [Google Scholar]
  24. Zhang S., Sanyal I., Bulboaca G. H., Rich A., Flint D. H. The gene for biotin synthase from Saccharomyces cerevisiae: cloning, sequencing, and complementation of Escherichia coli strains lacking biotin synthase. Arch Biochem Biophys. 1994 Feb 15;309(1):29–35. doi: 10.1006/abbi.1994.1079. [DOI] [PubMed] [Google Scholar]
  25. von Heijne G. Cleavage-site motifs in protein targeting sequences. Genet Eng (N Y) 1992;14:1–11. doi: 10.1007/978-1-4615-3424-2_1. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES