Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1996 Mar;110(3):1035–1046. doi: 10.1104/pp.110.3.1035

Cloning of wound-induced cytochrome P450 monooxygenases expressed in pea.

M R Frank 1, J M Deyneka 1, M A Schuler 1
PMCID: PMC157805  PMID: 8819874

Abstract

Cytochrome P450 monooxygenases (P450s) mediate a wide range of oxidative reactions involved in the biosynthesis of plant secondary metabolites including phenylpropanoids and phytoalexins. To investigate the regulation of these P450s in the phenylpropanoid biosynthetic pathway of pea (Pisum sativum), partial cDNAs representing four distinct P450s expressed in pea seedlings were cloned using a reverse transcription-polymerase chain reaction strategy. One of the corresponding full-length cDNA clones, designated CYP73A9, encodes pea trans-cinnamic acid 4-hydroxylase, which catalyzes the second core reaction in the phenylpropanoid pathway. As expected from its central role in the production of lignin precursors and defense compounds, northern analysis of poly(A)+ mRNA demonstrates that transcripts encoding CYP73A9 are induced appreciably within 3 h after wounding. A second cDNA clone, designated CYP82, encodes a novel P450, whose transcripts are also induced in response to wounding at approximately the same time as CYP73A9 transcripts. Despite the multitude of environmental stimuli known to induce expression of phenylpropanoid pathway enzymes, genomic DNA Southern analysis indicates that each of these P450s is encoded by a low copy number (possibly a single copy) gene family.

Full Text

The Full Text of this article is available as a PDF (3.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bolwell G. P., Bozak K., Zimmerlin A. Plant cytochrome P450. Phytochemistry. 1994 Dec;37(6):1491–1506. doi: 10.1016/s0031-9422(00)89567-9. [DOI] [PubMed] [Google Scholar]
  2. Bolwell G. P., Dixon R. A. Membrane-bound hydroxylases in elicitor-treated bean cells. Rapid induction of the synthesis of prolyl hydroxylase and a putative cytochrome P-450. Eur J Biochem. 1986 Aug 15;159(1):163–169. doi: 10.1111/j.1432-1033.1986.tb09847.x. [DOI] [PubMed] [Google Scholar]
  3. Bozak K. R., Yu H., Sirevåg R., Christoffersen R. E. Sequence analysis of ripening-related cytochrome P-450 cDNAs from avocado fruit. Proc Natl Acad Sci U S A. 1990 May;87(10):3904–3908. doi: 10.1073/pnas.87.10.3904. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cohen M. B., Schuler M. A., Berenbaum M. R. A host-inducible cytochrome P-450 from a host-specific caterpillar: molecular cloning and evolution. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10920–10924. doi: 10.1073/pnas.89.22.10920. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dixon R. A., Paiva N. L. Stress-Induced Phenylpropanoid Metabolism. Plant Cell. 1995 Jul;7(7):1085–1097. doi: 10.1105/tpc.7.7.1085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Donaldson R. P., Luster D. G. Multiple forms of plant cytochromes p-450. Plant Physiol. 1991 Jul;96(3):669–674. doi: 10.1104/pp.96.3.669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fahrendorf T., Dixon R. A. Stress responses in alfalfa (Medicago sativa L.). XVIII: Molecular cloning and expression of the elicitor-inducible cinnamic acid 4-hydroxylase cytochrome P450. Arch Biochem Biophys. 1993 Sep;305(2):509–515. doi: 10.1006/abbi.1993.1454. [DOI] [PubMed] [Google Scholar]
  8. Frolov M. V., Alatortsev V. E. Cluster of cytochrome P450 genes on the X chromosome of Drosophila melanogaster. DNA Cell Biol. 1994 Jun;13(6):663–668. doi: 10.1089/dna.1994.13.663. [DOI] [PubMed] [Google Scholar]
  9. Funk C., Croteau R. Induction and Characterization of a Cytochrome P-450-Dependent Camphor Hydroxylase in Tissue Cultures of Common Sage (Salvia officinalis). Plant Physiol. 1993 Apr;101(4):1231–1237. doi: 10.1104/pp.101.4.1231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gawienowski M. C., Szymanski D., Perera I. Y., Zielinski R. E. Calmodulin isoforms in Arabidopsis encoded by multiple divergent mRNAs. Plant Mol Biol. 1993 May;22(2):215–225. doi: 10.1007/BF00014930. [DOI] [PubMed] [Google Scholar]
  11. Gonzalez F. J., Nebert D. W. Evolution of the P450 gene superfamily: animal-plant 'warfare', molecular drive and human genetic differences in drug oxidation. Trends Genet. 1990 Jun;6(6):182–186. doi: 10.1016/0168-9525(90)90174-5. [DOI] [PubMed] [Google Scholar]
  12. Holton T. A., Brugliera F., Lester D. R., Tanaka Y., Hyland C. D., Menting J. G., Lu C. Y., Farcy E., Stevenson T. W., Cornish E. C. Cloning and expression of cytochrome P450 genes controlling flower colour. Nature. 1993 Nov 18;366(6452):276–279. doi: 10.1038/366276a0. [DOI] [PubMed] [Google Scholar]
  13. Hung C. F., Harrison T. L., Berenbaum M. R., Schuler M. A. CYP6B3: a second furanocoumarin-inducible cytochrome P450 expressed in Papilio polyxenes. Insect Mol Biol. 1995 Aug;4(3):149–160. doi: 10.1111/j.1365-2583.1995.tb00020.x. [DOI] [PubMed] [Google Scholar]
  14. Iwasaki M., Darden T. A., Parker C. E., Tomer K. B., Pedersen L. G., Negishi M. Inherent versatility of P-450 oxygenase. Conferring dehydroepiandrosterone hydroxylase activity to P-450 2a-4 by a single amino acid mutation at position 117. J Biol Chem. 1994 Mar 25;269(12):9079–9083. [PubMed] [Google Scholar]
  15. Iwasaki M., Davis D. G., Darden T. A., Pedersen L. G., Negishi M. Multiple steroid-binding orientations: alteration of regiospecificity of dehydroepiandrosterone 2- and 7-hydroxylase activities of cytochrome P-450 2a-5 by mutation of residue 209. Biochem J. 1995 Feb 15;306(Pt 1):29–33. doi: 10.1042/bj3060029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kato H., Wada M., Muraya K., Malik K., Shiraishi T., Ichinose Y., Yamada T. Characterization of nuclear factors for elicitor-mediated activation of the promoter of the pea phenylalanine ammonia-lyase gene 1. Plant Physiol. 1995 May;108(1):129–139. doi: 10.1104/pp.108.1.129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lois R., Dietrich A., Hahlbrock K., Schulz W. A phenylalanine ammonia-lyase gene from parsley: structure, regulation and identification of elicitor and light responsive cis-acting elements. EMBO J. 1989 Jun;8(6):1641–1648. doi: 10.1002/j.1460-2075.1989.tb03554.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ma R., Cohen M. B., Berenbaum M. R., Schuler M. A. Black swallowtail (Papilio polyxenes) alleles encode cytochrome P450s that selectively metabolize linear furanocoumarins. Arch Biochem Biophys. 1994 May 1;310(2):332–340. doi: 10.1006/abbi.1994.1175. [DOI] [PubMed] [Google Scholar]
  19. Meijer A. H., Souer E., Verpoorte R., Hoge J. H. Isolation of cytochrome P-450 cDNA clones from the higher plant Catharanthus roseus by a PCR strategy. Plant Mol Biol. 1993 May;22(2):379–383. doi: 10.1007/BF00014944. [DOI] [PubMed] [Google Scholar]
  20. Mizutani M., Ward E., DiMaio J., Ohta D., Ryals J., Sato R. Molecular cloning and sequencing of a cDNA encoding mung bean cytochrome P450 (P450C4H) possessing cinnamate 4-hydroxylase activity. Biochem Biophys Res Commun. 1993 Feb 15;190(3):875–880. doi: 10.1006/bbrc.1993.1130. [DOI] [PubMed] [Google Scholar]
  21. Murakami K., Mihara K., Omura T. The transmembrane region of microsomal cytochrome P450 identified as the endoplasmic reticulum retention signal. J Biochem. 1994 Jul;116(1):164–175. doi: 10.1093/oxfordjournals.jbchem.a124489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Nelson D. R., Koymans L., Kamataki T., Stegeman J. J., Feyereisen R., Waxman D. J., Waterman M. R., Gotoh O., Coon M. J., Estabrook R. W. P450 superfamily: update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenetics. 1996 Feb;6(1):1–42. doi: 10.1097/00008571-199602000-00002. [DOI] [PubMed] [Google Scholar]
  23. Ohkuma M., Hikiji T., Tanimoto T., Schunck W. H., Müller H. G., Yano K., Takagi M. Evidence that more than one gene encodes n-alkane-inducible cytochrome P-450s in Candida maltosa, found by two-step gene disruption. Agric Biol Chem. 1991 Jul;55(7):1757–1764. [PubMed] [Google Scholar]
  24. Orr J. D., Edwards R., Dixon R. A. Stress Responses in Alfalfa (Medicago sativa L.) (XIV. Changes in the Levels of Phenylpropanoid Pathway Intermediates in Relation to Regulation of L-Phenylalanine Ammonia-Lyase in Elicitor-Treated Cell-Suspension Cultures). Plant Physiol. 1993 Mar;101(3):847–856. doi: 10.1104/pp.101.3.847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Pendharkar M. B., Nair P. M. Studies on cinnamic acid-4-hydroxylase from wounded potato tissue: isolation and characterization of cinnamic acid-4-hydroxylase activation factor. Indian J Biochem Biophys. 1993 Apr;30(2):89–97. [PubMed] [Google Scholar]
  26. Puissant C., Houdebine L. M. An improvement of the single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Biotechniques. 1990 Feb;8(2):148–149. [PubMed] [Google Scholar]
  27. Reichhart D., Salaün J. P., Benveniste I., Durst F. Time Course of Induction of Cytochrome P-450, NADPH-Cytochrome c Reductase, and Cinnamic Acid Hydroxylase by Phenobarbital, Ethanol, Herbicides, and Manganese in Higher Plant Microsomes. Plant Physiol. 1980 Oct;66(4):600–604. doi: 10.1104/pp.66.4.600. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Rigaud G., Grange T., Pictet R. The use of NaOH as transfer solution of DNA onto nylon membrane decreases the hybridization efficiency. Nucleic Acids Res. 1987 Jan 26;15(2):857–857. doi: 10.1093/nar/15.2.857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sato T., Sakaguchi M., Mihara K., Omura T. The amino-terminal structures that determine topological orientation of cytochrome P-450 in microsomal membrane. EMBO J. 1990 Aug;9(8):2391–2397. doi: 10.1002/j.1460-2075.1990.tb07414.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Stewart C. B., Schuler M. A. Antigenic Crossreactivity between Bacterial and Plant Cytochrome P-450 Monoxygenases. Plant Physiol. 1989 Jun;90(2):534–541. doi: 10.1104/pp.90.2.534. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Subramaniam R., Reinold S., Molitor E. K., Douglas C. J. Structure, inheritance, and expression of hybrid poplar (Populus trichocarpa x Populus deltoides) phenylalanine ammonia-lyase genes. Plant Physiol. 1993 May;102(1):71–83. doi: 10.1104/pp.102.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Teutsch H. G., Hasenfratz M. P., Lesot A., Stoltz C., Garnier J. M., Jeltsch J. M., Durst F., Werck-Reichhart D. Isolation and sequence of a cDNA encoding the Jerusalem artichoke cinnamate 4-hydroxylase, a major plant cytochrome P450 involved in the general phenylpropanoid pathway. Proc Natl Acad Sci U S A. 1993 May 1;90(9):4102–4106. doi: 10.1073/pnas.90.9.4102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Toguri T., Umemoto N., Kobayashi O., Ohtani T. Activation of anthocyanin synthesis genes by white light in eggplant hypocotyl tissues, and identification of an inducible P-450 cDNA. Plant Mol Biol. 1993 Dec;23(5):933–946. doi: 10.1007/BF00021810. [DOI] [PubMed] [Google Scholar]
  34. Werck-Reichhart D., Batard Y., Kochs G., Lesot A., Durst F. Monospecific polyclonal antibodies directed against purified cinnamate 4-hydroxylase from Helianthus tuberosus. Immunopurification, immunoquantitation, and interspecies cross-reactivity. Plant Physiol. 1993 Aug;102(4):1291–1298. doi: 10.1104/pp.102.4.1291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Yamazaki S., Sato K., Suhara K., Sakaguchi M., Mihara K., Omura T. Importance of the proline-rich region following signal-anchor sequence in the formation of correct conformation of microsomal cytochrome P-450s. J Biochem. 1993 Nov;114(5):652–657. doi: 10.1093/oxfordjournals.jbchem.a124232. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES