Abstract
A 27-kD glycoprotein antigen recognized by monoclonal antibody MAC266 was purified from isolated symbiosomes derived from pea (Pisum sativum) root nodules containing Rhizobium. The N-terminal amino acid sequence was obtained, and the corresponding cDNA clone was isolated by a polymerase chain reaction-based strategy. The clone contained a single open reading frame, and the gene was termed PsNlec1. Phylogenetic analysis of 31 legume sequences showed that the PsNlec1 protein is related to the legume lectin family but belongs to a subgroup that is very different from pea seed lectin. Expression of the PsNlec1 transcript was much stronger in nodules than in other parts of the plant. It was found in both infected and uninfected cells in the central tissue of the nodule and in the stele of the root near the attachment point of the nodule. When uninfected pea seedlings were grown on medium containing nitrate, weak transcription of PsNlec1 was observed in the root system. The identification of PsNlec1 inside the symbiosome is consistent with the observation that legume lectins are generally vacuolar proteins that may serve as transient storage components.
Full Text
The Full Text of this article is available as a PDF (3.5 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Chawla D., Animashaun T., Hughes R. C., Harris A., Aitken A. Bowringia mildbraedii agglutinin: polypeptide composition, primary structure and homologies with other legume lectins. Biochim Biophys Acta. 1993 Sep 3;1202(1):38–46. doi: 10.1016/0167-4838(93)90060-5. [DOI] [PubMed] [Google Scholar]
- Chrispeels M. J., Raikhel N. V. Lectins, lectin genes, and their role in plant defense. Plant Cell. 1991 Jan;3(1):1–9. doi: 10.1105/tpc.3.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Block M., Debrouwer D. RNA-RNA in situ hybridization using digoxigenin-labeled probes: the use of high-molecular-weight polyvinyl alcohol in the alkaline phosphatase indoxyl-nitroblue tetrazolium reaction. Anal Biochem. 1993 Nov 15;215(1):86–89. doi: 10.1006/abio.1993.1558. [DOI] [PubMed] [Google Scholar]
- Grünert S., Jackson R. J. The immediate downstream codon strongly influences the efficiency of utilization of eukaryotic translation initiation codons. EMBO J. 1994 Aug 1;13(15):3618–3630. doi: 10.1002/j.1460-2075.1994.tb06669.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hansen J. E., Lund O., Engelbrecht J., Bohr H., Nielsen J. O., Hansen J. E. Prediction of O-glycosylation of mammalian proteins: specificity patterns of UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase. Biochem J. 1995 Jun 15;308(Pt 3):801–813. doi: 10.1042/bj3080801. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kannenberg E. L., Rathbun E. A., Brewin N. J. Molecular dissection of structure and function in the lipopolysaccharide of Rhizobium leguminosarum strain 3841 using monoclonal antibodies and genetic analysis. Mol Microbiol. 1992 Sep;6(17):2477–2487. doi: 10.1111/j.1365-2958.1992.tb01424.x. [DOI] [PubMed] [Google Scholar]
- Kardailsky I., Yang W. C., Zalensky A., van Kammen A., Bisseling T. The pea late nodulin gene PsNOD6 is homologous to the early nodulin genes PsENOD3/14 and is expressed after the leghaemoglobin genes. Plant Mol Biol. 1993 Dec;23(5):1029–1037. doi: 10.1007/BF00021817. [DOI] [PubMed] [Google Scholar]
- Kneen B. E., Larue T. A., Hirsch A. M., Smith C. A., Weeden N. F. sym 13-A Gene Conditioning Ineffective Nodulation in Pisum sativum. Plant Physiol. 1990 Nov;94(3):899–905. doi: 10.1104/pp.94.3.899. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Konami Y., Yamamoto K., Osawa T., Irimura T. Correlation between carbohydrate-binding specificity and amino acid sequence of carbohydrate-binding regions of Cytisus-type anti-H(O) lectins. FEBS Lett. 1992 Jun 15;304(2-3):129–135. doi: 10.1016/0014-5793(92)80603-e. [DOI] [PubMed] [Google Scholar]
- Konami Y., Yamamoto K., Toyoshima S., Osawa T. The primary structure of the Laburnum alpinum seed lectin. FEBS Lett. 1991 Jul 29;286(1-2):33–38. doi: 10.1016/0014-5793(91)80934-u. [DOI] [PubMed] [Google Scholar]
- Kouchalakos R. N., Bates O. J., Bradshaw R. A., Hapner K. D. Lectin from sainfoin (Onobrychis viciifolia scop.). Complete amino acid sequence. Biochemistry. 1984 Apr 10;23(8):1824–1830. doi: 10.1021/bi00303a038. [DOI] [PubMed] [Google Scholar]
- Mandaci S., Dobres M. S. Sequence of a vegetative homolog of the pea seed lectin gene. Plant Physiol. 1993 Oct;103(2):663–664. doi: 10.1104/pp.103.2.663. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakamura K., Matsuoka K. Protein targeting to the vacuole in plant cells. Plant Physiol. 1993 Jan;101(1):1–5. doi: 10.1104/pp.101.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pak J. H., Hendrickson T., Dobres M. S. Predicted sequence and structure of a vegetative lectin in Pisum sativum. Plant Mol Biol. 1992 Mar;18(5):857–863. doi: 10.1007/BF00019200. [DOI] [PubMed] [Google Scholar]
- Perez G., Perez C., Sousa-Cavada B., Moreira R., Richardson M. Comparison of the amino acid sequences of the lectins from seeds of Dioclea lehmanni and Canavalia maritima. Phytochemistry. 1991;30(8):2619–2621. doi: 10.1016/0031-9422(91)85111-c. [DOI] [PubMed] [Google Scholar]
- Roth L. E., Stacey G. Bacterium release into host cells of nitrogen-fixing soybean nodules: the symbiosome membrane comes from three sources. Eur J Cell Biol. 1989 Jun;49(1):13–23. [PubMed] [Google Scholar]
- Scheres B., Van De Wiel C., Zalensky A., Horvath B., Spaink H., Van Eck H., Zwartkruis F., Wolters A. M., Gloudemans T., Van Kammen A. The ENOD12 gene product is involved in the infection process during the pea-Rhizobium interaction. Cell. 1990 Jan 26;60(2):281–294. doi: 10.1016/0092-8674(90)90743-x. [DOI] [PubMed] [Google Scholar]
- Schroeder H. E., Gollasch S., Moore A., Tabe L. M., Craig S., Hardie D. C., Chrispeels M. J., Spencer D., Higgins TJV. Bean [alpha]-Amylase Inhibitor Confers Resistance to the Pea Weevil (Bruchus pisorum) in Transgenic Peas (Pisum sativum L.). Plant Physiol. 1995 Apr;107(4):1233–1239. doi: 10.1104/pp.107.4.1233. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sharon N. Lectin-carbohydrate complexes of plants and animals: an atomic view. Trends Biochem Sci. 1993 Jun;18(6):221–226. doi: 10.1016/0968-0004(93)90193-q. [DOI] [PubMed] [Google Scholar]
- Sharon N., Lis H. Legume lectins--a large family of homologous proteins. FASEB J. 1990 Nov;4(14):3198–3208. doi: 10.1096/fasebj.4.14.2227211. [DOI] [PubMed] [Google Scholar]
- Smit G., Swart S., Lugtenberg B. J., Kijne J. W. Molecular mechanisms of attachment of Rhizobium bacteria to plant roots. Mol Microbiol. 1992 Oct;6(20):2897–2903. doi: 10.1111/j.1365-2958.1992.tb01748.x. [DOI] [PubMed] [Google Scholar]
- VandenBosch K. A., Rodgers L. R., Sherrier D. J., Kishinevsky B. D. A Peanut Nodule Lectin in Infected Cells and in Vacuoles and the Extracellular Matrix of Nodule Parenchyma. Plant Physiol. 1994 Feb;104(2):327–337. doi: 10.1104/pp.104.2.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vasse J., de Billy F., Camut S., Truchet G. Correlation between ultrastructural differentiation of bacteroids and nitrogen fixation in alfalfa nodules. J Bacteriol. 1990 Aug;172(8):4295–4306. doi: 10.1128/jb.172.8.4295-4306.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vitale A., Chrispeels M. J. Sorting of proteins to the vacuoles of plant cells. Bioessays. 1992 Mar;14(3):151–160. doi: 10.1002/bies.950140303. [DOI] [PubMed] [Google Scholar]
- Wilson R. C., Long F., Maruoka E. M., Cooper J. B. A new proline-rich early nodulin from Medicago truncatula is highly expressed in nodule meristematic cells. Plant Cell. 1994 Sep;6(9):1265–1275. doi: 10.1105/tpc.6.9.1265. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wood E. A., Butcher G. W., Brewin N. J., Kannenberg E. L. Genetic derepression of a developmentally regulated lipopolysaccharide antigen from Rhizobium leguminosarum 3841. J Bacteriol. 1989 Sep;171(9):4549–4555. doi: 10.1128/jb.171.9.4549-4555.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamaguchi O., Kimura M., Araki M., Yamasaki N., Kimura Y., Nakajima S., Takagi S. Chemical structures of two subunits, A-subunit and B-subunit, of galactose-specific isolectins from Erythrina variegata seeds. J Biochem. 1993 Oct;114(4):560–566. doi: 10.1093/oxfordjournals.jbchem.a124216. [DOI] [PubMed] [Google Scholar]
- Yoshida K., Baba K., Yamamoto N., Tazaki K. Cloning of a lectin cDNA and seasonal changes in levels of the lectin and its mRNA in the inner bark of Robinia pseudoacacia. Plant Mol Biol. 1994 Aug;25(5):845–853. doi: 10.1007/BF00028879. [DOI] [PubMed] [Google Scholar]
- Young N. M., Oomen R. P. Analysis of sequence variation among legume lectins. A ring of hypervariable residues forms the perimeter of the carbohydrate-binding site. J Mol Biol. 1992 Dec 5;228(3):924–934. doi: 10.1016/0022-2836(92)90875-k. [DOI] [PubMed] [Google Scholar]
- von Heijne G. A new method for predicting signal sequence cleavage sites. Nucleic Acids Res. 1986 Jun 11;14(11):4683–4690. doi: 10.1093/nar/14.11.4683. [DOI] [PMC free article] [PubMed] [Google Scholar]