Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1996 May;111(1):109–113. doi: 10.1104/pp.111.1.109

Water Deficit-Induced Changes in Concentrations in Proline and Some Other Amino Acids in the Phloem Sap of Alfalfa.

C Girousse 1, R Bournoville 1, J L Bonnemain 1
PMCID: PMC157817  PMID: 12226278

Abstract

Changes in amino acid composition of alfalfa (Medicago sativa L.) phloem sap were studies in response to a water deficit. Sap was collected by stylectomy. As the leaf water potential ([psi]) decreased from -0.4 to -2.0 MPa, there was significant increase of the total amino acid concentration, due to that of some amino acids: proline, valine, isoleucine, leucine, glutamic acid, aspartic acid, and threonine. Asparagine concentration, which is the main amino acid assayed in the phloem sap of alfalfa (it accounts for 70% of the total content), did not vary with the plant water status. The other amino acid concentrations remained stable as [psi] varied; in particular, [gamma]-amino butyric acid concentration remained unchanged, whereas it varied in response to wounding. The more striking change in the sieve tubes was the accumulation of proline, which was observed below a [psi] threshold value of about -0.9 MPa (concentration x60 for a decrease of [psi] from -0.9 to -2.0 MPa). The role of such changes in phloem sap amino acid concentration in osmotic adjustment of growing tissues is discussed.

Full Text

The Full Text of this article is available as a PDF (454.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barnett N. M., Naylor A. W. Amino Acid and protein metabolism in bermuda grass during water stress. Plant Physiol. 1966 Sep;41(7):1222–1230. doi: 10.1104/pp.41.7.1222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Handa S., Bressan R. A., Handa A. K., Carpita N. C., Hasegawa P. M. Solutes contributing to osmotic adjustment in cultured plant cells adapted to water stress. Plant Physiol. 1983 Nov;73(3):834–843. doi: 10.1104/pp.73.3.834. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Handa S., Handa A. K., Hasegawa P. M., Bressan R. A. Proline accumulation and the adaptation of cultured plant cells to water stress. Plant Physiol. 1986 Apr;80(4):938–945. doi: 10.1104/pp.80.4.938. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Rhodes D., Handa S., Bressan R. A. Metabolic changes associated with adaptation of plant cells to water stress. Plant Physiol. 1986 Dec;82(4):890–903. doi: 10.1104/pp.82.4.890. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Scholander P. F., Bradstreet E. D., Hemmingsen E. A., Hammel H. T. Sap Pressure in Vascular Plants: Negative hydrostatic pressure can be measured in plants. Science. 1965 Apr 16;148(3668):339–346. doi: 10.1126/science.148.3668.339. [DOI] [PubMed] [Google Scholar]
  6. Stewart C. R. The effect of wilting on proline metabolism in excised bean leaves in the dark. Plant Physiol. 1973 Mar;51(3):508–511. doi: 10.1104/pp.51.3.508. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Tully R. E., Hanson A. D. Amino Acids Translocated from Turgid and Water-stressed Barley Leaves: I. Phloem Exudation Studies. Plant Physiol. 1979 Sep;64(3):460–466. doi: 10.1104/pp.64.3.460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Voetberg G. S., Sharp R. E. Growth of the Maize Primary Root at Low Water Potentials : III. Role of Increased Proline Deposition in Osmotic Adjustment. Plant Physiol. 1991 Aug;96(4):1125–1130. doi: 10.1104/pp.96.4.1125. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES