Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1996 May;111(1):301–312. doi: 10.1104/pp.111.1.301

Effects of COR6.6 and COR15am polypeptides encoded by COR (cold-regulated) genes of Arabidopsis thaliana on dehydration-induced phase transitions of phospholipid membranes.

M S Webb 1, S J Gilmour 1, M F Thomashow 1, P L Steponkus 1
PMCID: PMC157838  PMID: 8685270

Abstract

Cold acclimation of Arabidopsis thaliana includes the expression of cold-regulated (COR) genes and the accumulation of COR polypeptides. The hydration characteristics of two COR polypeptides, COR6.6 and COR15am, have been determined and their effects on the dehydration-induced liquid crystalline-to-gel and lamellar-to-hexagonal II phase transitions in phospholipid mixtures have been examined. After dehydration at osmotic pressures between 8 and 150 MPa, the water content of the COR polypeptides was less than that of bovine serum albumin, with COr15am the least hydrated: bovine serum albumin > COR6.6 > COR15am. Neither COR6.6 nor COR15am altered the dehydration-induced gel lamellar --> fluid lamellar phase transition temperature of either dipalmitoylphosphatidylcholine or dioleoylphosphatidylcholine (DOPC). In multilamellar vesicles of dioleoylphosphatidylethanolamine:DOPC (1:1, mol:mol) prepared by either freeze-thaw or reverse-phase evaporation methods, neither COR6.6, COR15am, nor bovine serum albumin altered the incidence of the dehydration-induced formation of the inverted hexagonal phase as a function of osmotic pressure. However, a specific ultrastructural alteration--the formation of a striated surface morphology in the lamellar domains--was observed in mixtures of dioleoylphosphatidylethanolamine:DOPC that were dehydrated in the presence of COR15am. Nevertheless, neither COR6.6 nor COR15am appears to participate in a specific protein-phospholipid interaction that alters the dehydration-induced phase behavior of phospholipid vesicles.

Full Text

The Full Text of this article is available as a PDF (3.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Gilmour S. J., Lin C., Thomashow M. F. Purification and properties of Arabidopsis thaliana COR (cold-regulated) gene polypeptides COR15am and COR6.6 expressed in Escherichia coli. Plant Physiol. 1996 May;111(1):293–299. doi: 10.1104/pp.111.1.293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Hincha D. K., DeVries A. L., Schmitt J. M. Cryotoxicity of antifreeze proteins and glycoproteins to spinach thylakoid membranes--comparison with cryotoxic sugar acids. Biochim Biophys Acta. 1993 Mar 14;1146(2):258–264. doi: 10.1016/0005-2736(93)90364-6. [DOI] [PubMed] [Google Scholar]
  3. Luna E. J., McConnell H. M. Multiple phase equilibria in binary mixtures of phospholipids. Biochim Biophys Acta. 1978 Jun 2;509(3):462–473. doi: 10.1016/0005-2736(78)90240-7. [DOI] [PubMed] [Google Scholar]
  4. Luna E. J., McConnell H. M. The intermediate monoclinic phase of phosphatidylcholines. Biochim Biophys Acta. 1977 May 2;466(3):381–392. doi: 10.1016/0005-2736(77)90331-5. [DOI] [PubMed] [Google Scholar]
  5. Mayer L. D., Hope M. J., Cullis P. R., Janoff A. S. Solute distributions and trapping efficiencies observed in freeze-thawed multilamellar vesicles. Biochim Biophys Acta. 1985 Jul 11;817(1):193–196. doi: 10.1016/0005-2736(85)90084-7. [DOI] [PubMed] [Google Scholar]
  6. Szoka F., Jr, Papahadjopoulos D. Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. Proc Natl Acad Sci U S A. 1978 Sep;75(9):4194–4198. doi: 10.1073/pnas.75.9.4194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Uemura M., Joseph R. A., Steponkus P. L. Cold Acclimation of Arabidopsis thaliana (Effect on Plasma Membrane Lipid Composition and Freeze-Induced Lesions). Plant Physiol. 1995 Sep;109(1):15–30. doi: 10.1104/pp.109.1.15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Volger H. G., Heber U. Cryoprotective leaf proteins. Biochim Biophys Acta. 1975 Dec 15;412(2):335–349. doi: 10.1016/0005-2795(75)90048-3. [DOI] [PubMed] [Google Scholar]
  9. Webb M. S., Hui S. W., Steponkus P. L. Dehydration-induced lamellar-to-hexagonal-II phase transitions in DOPE/DOPC mixtures. Biochim Biophys Acta. 1993 Jan 18;1145(1):93–104. doi: 10.1016/0005-2736(93)90385-d. [DOI] [PubMed] [Google Scholar]
  10. Webb M. S., Steponkus P. L. Freeze-Induced Membrane Ultrastructural Alterations in Rye (Secale cereale) Leaves. Plant Physiol. 1993 Mar;101(3):955–963. doi: 10.1104/pp.101.3.955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Webb M. S., Uemura M., Steponkus P. L. A Comparison of Freezing Injury in Oat and Rye: Two Cereals at the Extremes of Freezing Tolerance. Plant Physiol. 1994 Feb;104(2):467–478. doi: 10.1104/pp.104.2.467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Zasadzinski J. A. Effect of stereoconfiguration on ripple phases (P beta') of dipalmitoylphosphatidylcholine. Biochim Biophys Acta. 1988 Dec 22;946(2):235–243. doi: 10.1016/0005-2736(88)90398-7. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES