Abstract
Several cold-regulated (COR) polypeptides, which have little or no amino acid sequence identity with known proteins, are synthesized during cold acclimation of Arabidopsis thaliana. However, the function of the polypeptides has yet to be elucidated. The objective of this study was to determine if COR6.6 and COR15am influence the incidence of either freeze-induced fusion or freeze-induced leakage of small unilamellar vesicles (SUVs) composed of either a single species of phosphatidylcholine (either 1-palmitoyl-2-oleoyl-,dioleoyl-, or dilinoleoylphosphatidylcholine), a mixture of dioleoylphosphatidylcholine, dioleoylphosphatidylethanolamine, and free sterols (1:1:1, mol:mol), or the total lipid extract of the plasma membrane of either nonacclimated or cold-acclimated rye leaves. When the SUVs were suspended in a dilute tris(hydroxymethyl)-aminomethane/2-(N-morpholino) ethanesulfonic acid buffer, both COR6.6 and COR15am invariably decreased the incidence of freeze-induced fusion regardless of the lipid composition. However, if the SUVs were suspended in a dilute solution of either sucrose or NaCl, the COR polypeptides had little or no effect on the incidence of freeze-induced fusion. Moreover, the COR polypeptides did not decrease the incidence of freeze-induced leakage--regardless of whether the SUVs were suspended in either the dilute buffer alone or with added sucrose or NaCl. In fact, with SUVs composed of a single species of phosphatidylcholine suspended in the dilute buffer, the COR polypeptides resulted in an anomalous increase in freeze-induced leakage. When considered collectively, these results suggest that neither COR6.6 nor COR15am has a direct cryoprotective effect on SUVs frozen in vitro.
Full Text
The Full Text of this article is available as a PDF (1.6 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Christie P. J., Hahn M., Walbot V. Low-temperature accumulation of alcohol dehydrogenase-1 mRNA and protein activity in maize and rice seedlings. Plant Physiol. 1991 Mar;95(3):699–706. doi: 10.1104/pp.95.3.699. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Düzgüneş N., Straubinger R. M., Baldwin P. A., Friend D. S., Papahadjopoulos D. Proton-induced fusion of oleic acid-phosphatidylethanolamine liposomes. Biochemistry. 1985 Jun 18;24(13):3091–3098. doi: 10.1021/bi00334a004. [DOI] [PubMed] [Google Scholar]
- Gilmour S. J., Artus N. N., Thomashow M. F. cDNA sequence analysis and expression of two cold-regulated genes of Arabidopsis thaliana. Plant Mol Biol. 1992 Jan;18(1):13–21. doi: 10.1007/BF00018452. [DOI] [PubMed] [Google Scholar]
- Gilmour S. J., Lin C., Thomashow M. F. Purification and properties of Arabidopsis thaliana COR (cold-regulated) gene polypeptides COR15am and COR6.6 expressed in Escherichia coli. Plant Physiol. 1996 May;111(1):293–299. doi: 10.1104/pp.111.1.293. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guy C. L., Haskell D. Induction of freezing tolerance in spinach is associated with the synthesis of cold acclimation induced proteins. Plant Physiol. 1987 Jul;84(3):872–878. doi: 10.1104/pp.84.3.872. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hahn M., Walbot V. Effects of cold-treatment on protein synthesis and mRNA levels in rice leaves. Plant Physiol. 1989 Nov;91(3):930–938. doi: 10.1104/pp.91.3.930. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hajela R. K., Horvath D. P., Gilmour S. J., Thomashow M. F. Molecular Cloning and Expression of cor (Cold-Regulated) Genes in Arabidopsis thaliana. Plant Physiol. 1990 Jul;93(3):1246–1252. doi: 10.1104/pp.93.3.1246. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnson S. M., Buttress N. The osmotic insensitivity of sonicated liposomes and the density of phospholipid-cholesterol mixtures. Biochim Biophys Acta. 1973 Apr 25;307(1):20–26. doi: 10.1016/0005-2736(73)90021-7. [DOI] [PubMed] [Google Scholar]
- Kurkela S., Franck M. Cloning and characterization of a cold- and ABA-inducible Arabidopsis gene. Plant Mol Biol. 1990 Jul;15(1):137–144. doi: 10.1007/BF00017731. [DOI] [PubMed] [Google Scholar]
- Lerebours B., Wehrli E., Hauser H. Thermodynamic stability and osmotic sensitivity of small unilamellar phosphatidylcholine vesicles. Biochim Biophys Acta. 1993 Oct 10;1152(1):49–60. doi: 10.1016/0005-2736(93)90230-w. [DOI] [PubMed] [Google Scholar]
- Lin C., Thomashow M. F. A cold-regulated Arabidopsis gene encodes a polypeptide having potent cryoprotective activity. Biochem Biophys Res Commun. 1992 Mar 31;183(3):1103–1108. doi: 10.1016/s0006-291x(05)80304-3. [DOI] [PubMed] [Google Scholar]
- Struck D. K., Hoekstra D., Pagano R. E. Use of resonance energy transfer to monitor membrane fusion. Biochemistry. 1981 Jul 7;20(14):4093–4099. doi: 10.1021/bi00517a023. [DOI] [PubMed] [Google Scholar]
- Uemura M., Steponkus P. L. A Contrast of the Plasma Membrane Lipid Composition of Oat and Rye Leaves in Relation to Freezing Tolerance. Plant Physiol. 1994 Feb;104(2):479–496. doi: 10.1104/pp.104.2.479. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Uemura M., Steponkus P. L. Effect of cold acclimation on the incidence of two forms of freezing injury in protoplasts isolated from rye leaves. Plant Physiol. 1989 Nov;91(3):1131–1137. doi: 10.1104/pp.91.3.1131. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Urrutia M. E., Duman J. G., Knight C. A. Plant thermal hysteresis proteins. Biochim Biophys Acta. 1992 May 22;1121(1-2):199–206. doi: 10.1016/0167-4838(92)90355-h. [DOI] [PubMed] [Google Scholar]
- Volger H. G., Heber U. Cryoprotective leaf proteins. Biochim Biophys Acta. 1975 Dec 15;412(2):335–349. doi: 10.1016/0005-2795(75)90048-3. [DOI] [PubMed] [Google Scholar]
- Webb M. S., Gilmour S. J., Thomashow M. F., Steponkus P. L. Effects of COR6.6 and COR15am polypeptides encoded by COR (cold-regulated) genes of Arabidopsis thaliana on dehydration-induced phase transitions of phospholipid membranes. Plant Physiol. 1996 May;111(1):301–312. doi: 10.1104/pp.111.1.301. [DOI] [PMC free article] [PubMed] [Google Scholar]