Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1996 May;111(1):339–345. doi: 10.1104/pp.111.1.339

Analysis of flavanone 3-hydroxylase in Arabidopsis seedlings. Coordinate regulation with chalcone synthase and chalcone isomerase.

M K Pelletier 1, B W Shirley 1
PMCID: PMC157841  PMID: 8685272

Abstract

A genomic clone encoding flavanone 3-hydroxylase (F3H) was isolated from Arabidopsis thaliana. The deduced amino acid sequence is 72 to 94% identical to all previously reported F3H proteins. Low-stringency DNA blot analysis indicated that F3H is encoded by a single gene in Arabidopsis. The F3H locus was mapped to the bottom of chromosome 3 and therefore does not correspond to any of the 13 flavonoid-deficient transparent testa mutants for which a map position is known. Analysis of gene expression in etiolated seedlings exposed to white light and in two putative regulatory mutants, ttg and tt8, demonstrated that the Arabidopsis F3H gene is coordinately expressed with chalcone synthase and chalcone isomerases is seedlings, whereas dihydroflavonol reductase expression is controlled by distinct regulatory mechanisms. The F3H gene may represent a pivotal point in the regulation of flavonoid biosynthesis because its expression is coordinated with different subsets of genes in different plant species.

Full Text

The Full Text of this article is available as a PDF (1.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Britsch L., Dedio J., Saedler H., Forkmann G. Molecular characterization of flavanone 3 beta-hydroxylases. Consensus sequence, comparison with related enzymes and the role of conserved histidine residues. Eur J Biochem. 1993 Oct 15;217(2):745–754. doi: 10.1111/j.1432-1033.1993.tb18301.x. [DOI] [PubMed] [Google Scholar]
  2. Britsch L., Ruhnau-Brich B., Forkmann G. Molecular cloning, sequence analysis, and in vitro expression of flavanone 3 beta-hydroxylase from Petunia hybrida. J Biol Chem. 1992 Mar 15;267(8):5380–5387. [PubMed] [Google Scholar]
  3. Church G. M., Gilbert W. Genomic sequencing. Proc Natl Acad Sci U S A. 1984 Apr;81(7):1991–1995. doi: 10.1073/pnas.81.7.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Deboo G. B., Albertsen M. C., Taylor L. P. Flavanone 3-hydroxylase transcripts and flavonol accumulation are temporally coordinate in maize anthers. Plant J. 1995 May;7(5):703–713. doi: 10.1046/j.1365-313x.1995.07050703.x. [DOI] [PubMed] [Google Scholar]
  5. Dooner H. K., Robbins T. P., Jorgensen R. A. Genetic and developmental control of anthocyanin biosynthesis. Annu Rev Genet. 1991;25:173–199. doi: 10.1146/annurev.ge.25.120191.001133. [DOI] [PubMed] [Google Scholar]
  6. Gould S. J., Subramani S., Scheffler I. E. Use of the DNA polymerase chain reaction for homology probing: isolation of partial cDNA or genomic clones encoding the iron-sulfur protein of succinate dehydrogenase from several species. Proc Natl Acad Sci U S A. 1989 Mar;86(6):1934–1938. doi: 10.1073/pnas.86.6.1934. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kubasek W. L., Shirley B. W., McKillop A., Goodman H. M., Briggs W., Ausubel F. M. Regulation of Flavonoid Biosynthetic Genes in Germinating Arabidopsis Seedlings. Plant Cell. 1992 Oct;4(10):1229–1236. doi: 10.1105/tpc.4.10.1229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Leyva A., Jarillo J. A., Salinas J., Martinez-Zapater J. M. Low Temperature Induces the Accumulation of Phenylalanine Ammonia-Lyase and Chalcone Synthase mRNAs of Arabidopsis thaliana in a Light-Dependent Manner. Plant Physiol. 1995 May;108(1):39–46. doi: 10.1104/pp.108.1.39. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Li J., Ou-Lee T. M., Raba R., Amundson R. G., Last R. L. Arabidopsis Flavonoid Mutants Are Hypersensitive to UV-B Irradiation. Plant Cell. 1993 Feb;5(2):171–179. doi: 10.1105/tpc.5.2.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lloyd A. M., Walbot V., Davis R. W. Arabidopsis and Nicotiana anthocyanin production activated by maize regulators R and C1. Science. 1992 Dec 11;258(5089):1773–1775. doi: 10.1126/science.1465611. [DOI] [PubMed] [Google Scholar]
  11. Ludwig S. R., Habera L. F., Dellaporta S. L., Wessler S. R. Lc, a member of the maize R gene family responsible for tissue-specific anthocyanin production, encodes a protein similar to transcriptional activators and contains the myc-homology region. Proc Natl Acad Sci U S A. 1989 Sep;86(18):7092–7096. doi: 10.1073/pnas.86.18.7092. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Mo Y., Nagel C., Taylor L. P. Biochemical complementation of chalcone synthase mutants defines a role for flavonols in functional pollen. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):7213–7217. doi: 10.1073/pnas.89.15.7213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Quattrocchio F., Wing J. F., Leppen HTC., Mol JNM., Koes R. E. Regulatory Genes Controlling Anthocyanin Pigmentation Are Functionally Conserved among Plant Species and Have Distinct Sets of Target Genes. Plant Cell. 1993 Nov;5(11):1497–1512. doi: 10.1105/tpc.5.11.1497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Roach P. L., Clifton I. J., Fülöp V., Harlos K., Barton G. J., Hajdu J., Andersson I., Schofield C. J., Baldwin J. E. Crystal structure of isopenicillin N synthase is the first from a new structural family of enzymes. Nature. 1995 Jun 22;375(6533):700–704. doi: 10.1038/375700a0. [DOI] [PubMed] [Google Scholar]
  15. Shirley B. W., Goodman H. M. An Arabidopsis gene homologous to mammalian and insect genes encoding the largest proteasome subunit. Mol Gen Genet. 1993 Dec;241(5-6):586–594. doi: 10.1007/BF00279901. [DOI] [PubMed] [Google Scholar]
  16. Shirley B. W., Hanley S., Goodman H. M. Effects of ionizing radiation on a plant genome: analysis of two Arabidopsis transparent testa mutations. Plant Cell. 1992 Mar;4(3):333–347. doi: 10.1105/tpc.4.3.333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Shirley B. W., Kubasek W. L., Storz G., Bruggemann E., Koornneef M., Ausubel F. M., Goodman H. M. Analysis of Arabidopsis mutants deficient in flavonoid biosynthesis. Plant J. 1995 Nov;8(5):659–671. doi: 10.1046/j.1365-313x.1995.08050659.x. [DOI] [PubMed] [Google Scholar]
  18. Sparvoli F., Martin C., Scienza A., Gavazzi G., Tonelli C. Cloning and molecular analysis of structural genes involved in flavonoid and stilbene biosynthesis in grape (Vitis vinifera L.). Plant Mol Biol. 1994 Mar;24(5):743–755. doi: 10.1007/BF00029856. [DOI] [PubMed] [Google Scholar]
  19. Stafford H. A. Flavonoid evolution: an enzymic approach. Plant Physiol. 1991 Jul;96(3):680–685. doi: 10.1104/pp.96.3.680. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Stapleton A. E., Walbot V. Flavonoids can protect maize DNA from the induction of ultraviolet radiation damage. Plant Physiol. 1994 Jul;105(3):881–889. doi: 10.1104/pp.105.3.881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. The electronic Plant Gene Register. Plant Physiol. 1995 Nov;109(3):1125–1127. doi: 10.1104/pp.109.3.1125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Voytas D. F., Konieczny A., Cummings M. P., Ausubel F. M. The structure, distribution and evolution of the Ta1 retrotransposable element family of Arabidopsis thaliana. Genetics. 1990 Nov;126(3):713–721. doi: 10.1093/genetics/126.3.713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. van der Meer I. M., Stam M. E., van Tunen A. J., Mol J. N., Stuitje A. R. Antisense inhibition of flavonoid biosynthesis in petunia anthers results in male sterility. Plant Cell. 1992 Mar;4(3):253–262. doi: 10.1105/tpc.4.3.253. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES