Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1996 Jun;111(2):381–391. doi: 10.1104/pp.111.2.381

Abscisic acid induces the alcohol dehydrogenase gene in Arabidopsis.

G L de Bruxelles 1, W J Peacock 1, E S Dennis 1, R Dolferus 1
PMCID: PMC157847  PMID: 8787023

Abstract

Exogenous abscisic acid (ABA) induced the alcohol dehydrogenase gene (Adh) in Arabidopsis roots. Both the G-box-1 element and the GT/GC motifs (anaerobic response element) were required for Adh inducibility. Measurement of endogenous ABA levels during stress treatment showed that ABA levels increased during dehydration treatment but not following exposure to either hypoxia or low temperature. Arabidopsis ABA mutants (aba1 and abi2) displayed reduced Adh mRNA induction levels following either dehydration treatment or exogenous application of ABA. Low-oxygen response was slightly increased in the aba1 mutant but was unchanged in abi2. Low-temperature response was unaffected in both aba1 and abi2 mutants. Our results indicate that, although induction of the Adh gene by ABA, dehydration, and low temperature required the same cis-acting promoter elements, their regulatory pathways were at least partially separated in a combined dehydration/ABA pathway and an ABA-independent low-temperature pathway. These pathways were in turn independent of a third signal transduction pathway leading to low-oxygen response, which did not involve either ABA or the G-box-1 promoter element.

Full Text

The Full Text of this article is available as a PDF (1.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  2. Chen H. H., Li P. H., Brenner M. L. Involvement of abscisic Acid in potato cold acclimation. Plant Physiol. 1983 Feb;71(2):362–365. doi: 10.1104/pp.71.2.362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cloutier Y., Siminovitch D. Correlation between Cold- and Drought-Induced Frost Hardiness in Winter Wheat and Rye Varieties. Plant Physiol. 1982 Jan;69(1):256–258. doi: 10.1104/pp.69.1.256. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dolferus R., Jacobs M., Peacock W. J., Dennis E. S. Differential interactions of promoter elements in stress responses of the Arabidopsis Adh gene. Plant Physiol. 1994 Aug;105(4):1075–1087. doi: 10.1104/pp.105.4.1075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ellis J. G., Llewellyn D. J., Dennis E. S., Peacock W. J. Maize Adh-1 promoter sequences control anaerobic regulation: addition of upstream promoter elements from constitutive genes is necessary for expression in tobacco. EMBO J. 1987 Jan;6(1):11–16. doi: 10.1002/j.1460-2075.1987.tb04711.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Giraudat J., Hauge B. M., Valon C., Smalle J., Parcy F., Goodman H. M. Isolation of the Arabidopsis ABI3 gene by positional cloning. Plant Cell. 1992 Oct;4(10):1251–1261. doi: 10.1105/tpc.4.10.1251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Guerrero F. D., Jones J. T., Mullet J. E. Turgor-responsive gene transcription and RNA levels increase rapidly when pea shoots are wilted. Sequence and expression of three inducible genes. Plant Mol Biol. 1990 Jul;15(1):11–26. doi: 10.1007/BF00017720. [DOI] [PubMed] [Google Scholar]
  8. Guiltinan M. J., Marcotte W. R., Jr, Quatrano R. S. A plant leucine zipper protein that recognizes an abscisic acid response element. Science. 1990 Oct 12;250(4978):267–271. doi: 10.1126/science.2145628. [DOI] [PubMed] [Google Scholar]
  9. Guo W., Ward R. W., Thomashow M. F. Characterization of a Cold-Regulated Wheat Gene Related to Arabidopsis cor47. Plant Physiol. 1992 Oct;100(2):915–922. doi: 10.1104/pp.100.2.915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hwang S. Y., Vantoai T. T. Abscisic Acid induces anaerobiosis tolerance in corn. Plant Physiol. 1991 Oct;97(2):593–597. doi: 10.1104/pp.97.2.593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Izawa T., Foster R., Chua N. H. Plant bZIP protein DNA binding specificity. J Mol Biol. 1993 Apr 20;230(4):1131–1144. doi: 10.1006/jmbi.1993.1230. [DOI] [PubMed] [Google Scholar]
  12. Jarillo J. A., Leyva A., Salinas J., Martinez-Zapater J. M. Low Temperature Induces the Accumulation of Alcohol Dehydrogenase mRNA in Arabidopsis thaliana, a Chilling-Tolerant Plant. Plant Physiol. 1993 Mar;101(3):833–837. doi: 10.1104/pp.101.3.833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kurkela S., Franck M. Cloning and characterization of a cold- and ABA-inducible Arabidopsis gene. Plant Mol Biol. 1990 Jul;15(1):137–144. doi: 10.1007/BF00017731. [DOI] [PubMed] [Google Scholar]
  14. Lang V., Mantyla E., Welin B., Sundberg B., Palva E. T. Alterations in Water Status, Endogenous Abscisic Acid Content, and Expression of rab18 Gene during the Development of Freezing Tolerance in Arabidopsis thaliana. Plant Physiol. 1994 Apr;104(4):1341–1349. doi: 10.1104/pp.104.4.1341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lång V., Palva E. T. The expression of a rab-related gene, rab18, is induced by abscisic acid during the cold acclimation process of Arabidopsis thaliana (L.) Heynh. Plant Mol Biol. 1992 Dec;20(5):951–962. doi: 10.1007/BF00027165. [DOI] [PubMed] [Google Scholar]
  16. Michel D., Salamini F., Bartels D., Dale P., Baga M., Szalay A. Analysis of a desiccation and ABA-responsive promoter isolated from the resurrection plant Craterostigma plantagineum. Plant J. 1993 Jul;4(1):29–40. doi: 10.1046/j.1365-313x.1993.04010029.x. [DOI] [PubMed] [Google Scholar]
  17. Mundy J., Yamaguchi-Shinozaki K., Chua N. H. Nuclear proteins bind conserved elements in the abscisic acid-responsive promoter of a rice rab gene. Proc Natl Acad Sci U S A. 1990 Feb;87(4):1406–1410. doi: 10.1073/pnas.87.4.1406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Nordin K., Heino P., Palva E. T. Separate signal pathways regulate the expression of a low-temperature-induced gene in Arabidopsis thaliana (L.) Heynh. Plant Mol Biol. 1991 Jun;16(6):1061–1071. doi: 10.1007/BF00016077. [DOI] [PubMed] [Google Scholar]
  19. Olive M. R., Peacock W. J., Dennis E. S. The anaerobic responsive element contains two GC-rich sequences essential for binding a nuclear protein and hypoxic activation of the maize Adh1 promoter. Nucleic Acids Res. 1991 Dec;19(25):7053–7060. doi: 10.1093/nar/19.25.7053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Rock C. D., Zeevaart J. A. The aba mutant of Arabidopsis thaliana is impaired in epoxy-carotenoid biosynthesis. Proc Natl Acad Sci U S A. 1991 Sep 1;88(17):7496–7499. doi: 10.1073/pnas.88.17.7496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Schindler U., Menkens A. E., Beckmann H., Ecker J. R., Cashmore A. R. Heterodimerization between light-regulated and ubiquitously expressed Arabidopsis GBF bZIP proteins. EMBO J. 1992 Apr;11(4):1261–1273. doi: 10.1002/j.1460-2075.1992.tb05170.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Schulze-Lefert P., Dangl J. L., Becker-André M., Hahlbrock K., Schulz W. Inducible in vivo DNA footprints define sequences necessary for UV light activation of the parsley chalcone synthase gene. EMBO J. 1989 Mar;8(3):651–656. doi: 10.1002/j.1460-2075.1989.tb03422.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Shen Q., Ho T. H. Functional dissection of an abscisic acid (ABA)-inducible gene reveals two independent ABA-responsive complexes each containing a G-box and a novel cis-acting element. Plant Cell. 1995 Mar;7(3):295–307. doi: 10.1105/tpc.7.3.295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Valvekens D., Van Montagu M., Van Lijsebettens M. Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection. Proc Natl Acad Sci U S A. 1988 Aug;85(15):5536–5540. doi: 10.1073/pnas.85.15.5536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Vilardell J., Mundy J., Stilling B., Leroux B., Pla M., Freyssinet G., Pagès M. Regulation of the maize rab17 gene promoter in transgenic heterologous systems. Plant Mol Biol. 1991 Nov;17(5):985–993. doi: 10.1007/BF00037138. [DOI] [PubMed] [Google Scholar]
  26. Williams M. E., Foster R., Chua N. H. Sequences flanking the hexameric G-box core CACGTG affect the specificity of protein binding. Plant Cell. 1992 Apr;4(4):485–496. doi: 10.1105/tpc.4.4.485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Yamaguchi-Shinozaki K., Shinozaki K. Characterization of the expression of a desiccation-responsive rd29 gene of Arabidopsis thaliana and analysis of its promoter in transgenic plants. Mol Gen Genet. 1993 Jan;236(2-3):331–340. doi: 10.1007/BF00277130. [DOI] [PubMed] [Google Scholar]
  28. Yamaguchi-Shinozaki K., Shinozaki K. The plant hormone abscisic acid mediates the drought-induced expression but not the seed-specific expression of rd22, a gene responsive to dehydration stress in Arabidopsis thaliana. Mol Gen Genet. 1993 Apr;238(1-2):17–25. doi: 10.1007/BF00279525. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES