Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1996 Jun;111(2):403–412. doi: 10.1104/pp.111.2.403

Characterization of Membrane Properties in Desiccation-Tolerant and -Intolerant Carrot Somatic Embryos.

FAA Tetteroo 1, A Y De Bruijn 1, RNM Henselmans 1, W F Wolkers 1, A C Van Aelst 1, F A Hoekstra 1
PMCID: PMC157849  PMID: 12226295

Abstract

In previous studies, we have shown that carrot (Daucus carota L.) somatic embryos acquire complete desiccation tolerance when they are treated with abscisic acid during culture and subsequently dried slowly. With this manipulable system at hand, we have assessed damage associated with desiccation intolerance. Fast drying caused loss of viability, and all K+ and carbohydrates leached from the somatic embryos within 5 min of imbibition. The phospholipid content decreased by about 20%, and the free fatty acid content increased, which was not observed after slow drying. However, the extent of acyl chain unsaturation was unaltered, irrespective of the drying rate. These results indicate that, during rapid drying, irreversible changes occur in the membranes that are associated with extensive leakage and loss of germinability. The status of membranes after 2 h of imbibition was analyzed in a freeze-fracture study and by Fourier transform infrared spectroscopy. Rapidly dried somatic embryos had clusters of intramembraneous particles in their plasma membranes, and the transition temperature of isolated membranes was above room temperature. Membrane proteins were irreversibly aggregated in an extended [beta]-sheet conformation and had a reduced proportion of [alpha]-helical structures. In contrast, the slowly dried somatic embryos had irregularly distributed, but non-clustered, intramembraneous particles, the transition temperature was below room temperature, and the membrane proteins were not aggregated in a [beta]-sheet conformation. We suggest that desiccation sensitivity of rapidly dried carrot somatic embryos is indirectly caused by an irreversible phase separation in the membranes due to de-esterification of phospholipids and accumulation of free fatty acids.

Full Text

The Full Text of this article is available as a PDF (2.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bandekar J. Amide modes and protein conformation. Biochim Biophys Acta. 1992 Apr 8;1120(2):123–143. doi: 10.1016/0167-4838(92)90261-b. [DOI] [PubMed] [Google Scholar]
  2. Branton D., Bullivant S., Gilula N. B., Karnovsky M. J., Moor H., Mühlethaler K., Northcote D. H., Packer L., Satir B., Satir P. Freeze-etching nomenclature. Science. 1975 Oct 3;190(4209):54–56. doi: 10.1126/science.1166299. [DOI] [PubMed] [Google Scholar]
  3. Crowe J. H., Crowe L. M., Carpenter J. F., Aurell Wistrom C. Stabilization of dry phospholipid bilayers and proteins by sugars. Biochem J. 1987 Feb 15;242(1):1–10. doi: 10.1042/bj2420001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Crowe J. H., Hoekstra F. A., Crowe L. M., Anchordoguy T. J., Drobnis E. Lipid phase transitions measured in intact cells with Fourier transform infrared spectroscopy. Cryobiology. 1989 Feb;26(1):76–84. doi: 10.1016/0011-2240(89)90035-7. [DOI] [PubMed] [Google Scholar]
  5. Crowe J. H., Hoekstra F. A., Crowe L. M. Anhydrobiosis. Annu Rev Physiol. 1992;54:579–599. doi: 10.1146/annurev.ph.54.030192.003051. [DOI] [PubMed] [Google Scholar]
  6. Crowe J. H., Hoekstra F. A., Crowe L. M. Membrane phase transitions are responsible for imbibitional damage in dry pollen. Proc Natl Acad Sci U S A. 1989 Jan;86(2):520–523. doi: 10.1073/pnas.86.2.520. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Crowe L. M., Crowe J. H. Anhydrobiosis: a strategy for survival. Adv Space Res. 1992;12(4):239–247. doi: 10.1016/0273-1177(92)90178-z. [DOI] [PubMed] [Google Scholar]
  8. Duke S. H., Kakefuda G. Role of the testa in preventing cellular rupture during imbibition of legume seeds. Plant Physiol. 1981 Mar;67(3):449–456. doi: 10.1104/pp.67.3.449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Garcia-Quintana D., Garriga P., Manyosa J. Quantitative characterization of the structure of rhodopsin in disc membrane by means of Fourier transform infrared spectroscopy. J Biol Chem. 1993 Feb 5;268(4):2403–2409. [PubMed] [Google Scholar]
  10. Hammoudah M. M., Nir S., Bentz J., Mayhew E., Stewart T. P., Hui S. W., Kurland R. J. Interactions of La2+ with phosphatidylserine vesicles: binding, phase transition, leakage, 31P-NMR and fusion. Biochim Biophys Acta. 1981 Jul 6;645(1):102–114. doi: 10.1016/0005-2736(81)90517-4. [DOI] [PubMed] [Google Scholar]
  11. Hemminga M. A., Sanders J. C., Spruijt R. B. Spectroscopy of lipid-protein interactions: structural aspects of two different forms of the coat protein of bacteriophage M13 incorporated in model membranes. Prog Lipid Res. 1992;31(3):301–333. doi: 10.1016/0163-7827(92)90011-7. [DOI] [PubMed] [Google Scholar]
  12. Hoekstra F. A., van Roekel T. Desiccation Tolerance of Papaver dubium L. Pollen during Its Development in the Anther: Possible Role of Phospholipid Composition and Sucrose Content. Plant Physiol. 1988 Nov;88(3):626–632. doi: 10.1104/pp.88.3.626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. McKersie B. D., Stinson R. H. Effect of Dehydration on Leakage and Membrane Structure in Lotus corniculatus L. Seeds. Plant Physiol. 1980 Aug;66(2):316–320. doi: 10.1104/pp.66.2.316. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Sanders J. C., Haris P. I., Chapman D., Otto C., Hemminga M. A. Secondary structure of M13 coat protein in phospholipids studied by circular dichroism, Raman, and Fourier transform infrared spectroscopy. Biochemistry. 1993 Nov 23;32(46):12446–12454. doi: 10.1021/bi00097a024. [DOI] [PubMed] [Google Scholar]
  15. Senaratna T., McKersie B. D. Characterization of Solute Efflux from Dehydration Injured Soybean (Glycine max L. Merr) Seeds. Plant Physiol. 1983 Aug;72(4):911–914. doi: 10.1104/pp.72.4.911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Senaratna T., McKersie B. D., Stinson R. H. Antioxidant levels in germinating soybean seed axes in relation to free radical and dehydration tolerance. Plant Physiol. 1985 May;78(1):168–171. doi: 10.1104/pp.78.1.168. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Senaratna T., McKersie B. D., Stinson R. H. Association between Membrane Phase Properties and Dehydration Injury in Soybean Axes. Plant Physiol. 1984 Nov;76(3):759–762. doi: 10.1104/pp.76.3.759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Senaratna T., McKersie B. D., Stinson R. H. Simulation of dehydration injury to membranes from soybean axes by free radicals. Plant Physiol. 1985 Feb;77(2):472–474. doi: 10.1104/pp.77.2.472. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Surewicz W. K., Mantsch H. H., Chapman D. Determination of protein secondary structure by Fourier transform infrared spectroscopy: a critical assessment. Biochemistry. 1993 Jan 19;32(2):389–394. doi: 10.1021/bi00053a001. [DOI] [PubMed] [Google Scholar]
  20. Surewicz W. K., Mantsch H. H. New insight into protein secondary structure from resolution-enhanced infrared spectra. Biochim Biophys Acta. 1988 Jan 29;952(2):115–130. doi: 10.1016/0167-4838(88)90107-0. [DOI] [PubMed] [Google Scholar]
  21. Susi H., Timasheff S. N., Stevens L. Infrared spectra and protein conformations in aqueous solutions. I. The amide I band in H2O and D2O solutions. J Biol Chem. 1967 Dec 10;242(23):5460–5466. [PubMed] [Google Scholar]
  22. Wolkers W. F., Hoekstra F. A. Aging of Dry Desiccation-Tolerant Pollen Does Not Affect Protein Secondary Structure. Plant Physiol. 1995 Nov;109(3):907–915. doi: 10.1104/pp.109.3.907. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES