Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1996 Jun;111(2):427–432. doi: 10.1104/pp.111.2.427

The N-1-Naphthylphthalamic Acid-Binding Protein Is an Integral Membrane Protein.

P Bernasconi 1, B C Patel 1, J D Reagan 1, M V Subramanian 1
PMCID: PMC157852  PMID: 12226298

Abstract

N-1-Naphthylphthalmic acid (NPA)-binding protein is a plasmalemma (PM) protein involved in the control of cellular auxin efflux. We re-evaluated the spatial relationship of this protein with the PM of zucchini (Cucurbita pepo L.) hypocotyls. First, Triton X-114 partitioning indicated that the NPA-binding protein was more hydrophobic than most PM proteins. Second, the NPA-binding activity was found to be resistant to proteolytic digestion in membranes. Maximum concentrations of binding sites for NPA were virtually identical in untreated and proteinase K-treated PMs: 19.2 and 20.6 pmol [3H]NPA bound/mg protein, respectively. The insensitivity of the NPA-binding protein was not due to its presence inside tightly sealed vesicles or due to lack of protease activity in the conditions tested. This protein could be made sensitive to proteolytic degradation upon solubilization by 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate in the presence of sodium molybdate. Proteinase K treatment decreased the concentration of binding sites to 0.84 pmol [3H]NPA bound/mg protein from 9.2 for untreated, solubilized PM. Third, this activity could not be solubilized by chaotropic agents or sodium carbonate treatment of intact PM. This study indicates that the NPA-binding protein may be an integral membrane protein and contradicts previously reported findings that suggested that this protein was peripheral to the PM.

Full Text

The Full Text of this article is available as a PDF (1.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bordier C. Phase separation of integral membrane proteins in Triton X-114 solution. J Biol Chem. 1981 Feb 25;256(4):1604–1607. [PubMed] [Google Scholar]
  2. Bruns R. F., Lawson-Wendling K., Pugsley T. A. A rapid filtration assay for soluble receptors using polyethylenimine-treated filters. Anal Biochem. 1983 Jul 1;132(1):74–81. doi: 10.1016/0003-2697(83)90427-x. [DOI] [PubMed] [Google Scholar]
  3. Chanson A., McNaughton E., Taiz L. Evidence for a KCl-Stimulated, Mg-ATPase on the Golgi of Corn Coleoptiles. Plant Physiol. 1984 Oct;76(2):498–507. doi: 10.1104/pp.76.2.498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cox D. N., Muday G. K. NPA binding activity is peripheral to the plasma membrane and is associated with the cytoskeleton. Plant Cell. 1994 Dec;6(12):1941–1953. doi: 10.1105/tpc.6.12.1941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hjelmeland L. M., Chrambach A. Solubilization of functional membrane proteins. Methods Enzymol. 1984;104:305–318. doi: 10.1016/s0076-6879(84)04097-0. [DOI] [PubMed] [Google Scholar]
  6. Hoffmann O. L., Smith A. E. A New Group of Plant Growth Regulators. Science. 1949 Jun 10;109(2841):588–588. doi: 10.1126/science.109.2841.588. [DOI] [PubMed] [Google Scholar]
  7. Jacobs M., Rubery P. H. Naturally occurring auxin transport regulators. Science. 1988 Jul 15;241(4863):346–349. doi: 10.1126/science.241.4863.346. [DOI] [PubMed] [Google Scholar]
  8. Katekar G. F., Geissler A. E. Auxin Transport Inhibitors: III. Chemical Requirements of a Class of Auxin Transport Inhibitors. Plant Physiol. 1977 Dec;60(6):826–829. doi: 10.1104/pp.60.6.826. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. MORGAN D. G. INFLUENCE OF ALPHA-NAPHTHYLPHTHALAMIC ACID ON THE MOVEMENT OF INDOLYL-3-ACETIC ACID IN PLANTS. Nature. 1964 Feb 1;201:476–477. doi: 10.1038/201476a0. [DOI] [PubMed] [Google Scholar]
  10. Manchester D. K., Gordon S. K., Golas C. L., Roberts E. A., Okey A. B. Ah receptor in human placenta: stabilization by molybdate and characterization of binding of 2,3,7,8-tetrachlorodibenzo-p-dioxin, 3-methylcholanthrene, and benzo(a)pyrene. Cancer Res. 1987 Sep 15;47(18):4861–4868. [PubMed] [Google Scholar]
  11. Muday G. K., Brunn S. A., Haworth P., Subramanian M. Evidence for a Single Naphthylphthalamic Acid Binding Site on the Zucchini Plasma Membrane. Plant Physiol. 1993 Oct;103(2):449–456. doi: 10.1104/pp.103.2.449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Munson P. J., Rodbard D. Ligand: a versatile computerized approach for characterization of ligand-binding systems. Anal Biochem. 1980 Sep 1;107(1):220–239. doi: 10.1016/0003-2697(80)90515-1. [DOI] [PubMed] [Google Scholar]
  13. Oecking C., Eckerskorn C., Weiler E. W. The fusicoccin receptor of plants is a member of the 14-3-3 superfamily of eukaryotic regulatory proteins. FEBS Lett. 1994 Sep 26;352(2):163–166. doi: 10.1016/0014-5793(94)00949-x. [DOI] [PubMed] [Google Scholar]
  14. Pryde J. G., Phillips J. H. Fractionation of membrane proteins by temperature-induced phase separation in Triton X-114. Application to subcellular fractions of the adrenal medulla. Biochem J. 1986 Jan 15;233(2):525–533. doi: 10.1042/bj2330525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Sussman M. R., Gardner G. Solubilization of the receptor for N-1-naphthylphthalamic Acid. Plant Physiol. 1980 Dec;66(6):1074–1078. doi: 10.1104/pp.66.6.1074. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES