Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1996 Jun;111(2):613–618. doi: 10.1104/pp.111.2.613

Specificity of the Organic Acid Activation of Alternative Oxidase in Plant Mitochondria.

A H Millar 1, MHN Hoefnagel 1, D A Day 1, J T Wiskich 1
PMCID: PMC157873  PMID: 12226315

Abstract

The claim that succinate and malate can directly stimulate the activity of the alternative oxidase in plant mitochondria (A.M. Wagner, C.W.M. van den Bergen, H. Wincencjusz [1995] Plant Physiol 108: 1035-1042) was reinvestigated using sweet potato (Ipomoea batatas L.) mitochondria. In whole mitochondria, succinate (in the presence of malonate) and both L- and D-malate stimulated respiration via alternative oxidase in a pH- (and NAD+)-dependent manner. Solubilized malic enzyme catalyzed the oxidation of both L- and D-malate, although the latter at only a low rate and only at acid pH. In submitochondrial particle preparations with negligible malic enzyme activity, neither L- nor D-malate stimulated alternative oxidase activity. However, even in the presence of high malonate concentrations, some succinate oxidation was observed via the alternative oxidase, giving the impression of stimulation of the oxidase. Neither L-malate nor succinate (in the presence of malonate) changed the dependence of alternative oxidase activity on ubiquinone reduction state in submitochondrial particles. In contrast, a large change in this dependence was observed upon addition of pyruvate. Half-maximal stimulation of alternative oxidase by pyruvate occurred at less than 5 [mu]M in submitochondrial particles, one-twentieth of that reported for whole mitochondria, suggesting that pyruvate acts on the inside of the mitochondrion. We suggest that malate and succinate do not directly stimulate alternative oxidase, and that reports to the contrary reflect intra-mitochondrial generation of pyruvate via malic enzyme.

Full Text

The Full Text of this article is available as a PDF (637.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Day D. A., Hanson J. B. Pyruvate and malate transport and oxidation in corn mitochondria. Plant Physiol. 1977 Apr;59(4):630–635. doi: 10.1104/pp.59.4.630. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Day D. A., Neuburger M., Douce R. Activation of NAD-linked malic enzyme in intact plant mitochondria by exogenous coenzyme A. Arch Biochem Biophys. 1984 May 15;231(1):233–242. doi: 10.1016/0003-9861(84)90383-7. [DOI] [PubMed] [Google Scholar]
  3. Hiser C., McIntosh L. Alternative Oxidase of Potato Is an Integral Membrane Protein Synthesized de Novo during Aging of Tuber Slices. Plant Physiol. 1990 May;93(1):312–318. doi: 10.1104/pp.93.1.312. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hoefnagel M. H., Millar A. H., Wiskich J. T., Day D. A. Cytochrome and alternative respiratory pathways compete for electrons in the presence of pyruvate in soybean mitochondria. Arch Biochem Biophys. 1995 Apr 20;318(2):394–400. doi: 10.1006/abbi.1995.1245. [DOI] [PubMed] [Google Scholar]
  5. Hoefnagel MHN., Wiskich J. T. Alternative Oxidase Activity and the Ubiquinone Redox Level in Soybean Cotyledon and Arum Spadix Mitochondria during NADH and Succinate Oxidation. Plant Physiol. 1996 Apr;110(4):1329–1335. doi: 10.1104/pp.110.4.1329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Millar A. H., Wiskich J. T., Whelan J., Day D. A. Organic acid activation of the alternative oxidase of plant mitochondria. FEBS Lett. 1993 Aug 30;329(3):259–262. doi: 10.1016/0014-5793(93)80233-k. [DOI] [PubMed] [Google Scholar]
  7. Minagawa N., Yoshimoto A. The induction of cyanide-resistant respiration in Hansenula anomala. J Biochem. 1987 May;101(5):1141–1146. doi: 10.1093/oxfordjournals.jbchem.a121978. [DOI] [PubMed] [Google Scholar]
  8. Rhoads D. M., McIntosh L. The salicylic acid-inducible alternative oxidase gene aox1 and genes encoding pathogenesis-related proteins share regions of sequence similarity in their promoters. Plant Mol Biol. 1993 Feb;21(4):615–624. doi: 10.1007/BF00014545. [DOI] [PubMed] [Google Scholar]
  9. Tobin A., Djerdjour B., Journet E., Neuburger M., Douce R. Effect of NAD on Malate Oxidation in Intact Plant Mitochondria. Plant Physiol. 1980 Aug;66(2):225–229. doi: 10.1104/pp.66.2.225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Umbach A. L., Siedow J. N. Covalent and Noncovalent Dimers of the Cyanide-Resistant Alternative Oxidase Protein in Higher Plant Mitochondria and Their Relationship to Enzyme Activity. Plant Physiol. 1993 Nov;103(3):845–854. doi: 10.1104/pp.103.3.845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Vanlerberghe G. C., Day D. A., Wiskich J. T., Vanlerberghe A. E., McIntosh L. Alternative Oxidase Activity in Tobacco Leaf Mitochondria (Dependence on Tricarboxylic Acid Cycle-Mediated Redox Regulation and Pyruvate Activation). Plant Physiol. 1995 Oct;109(2):353–361. doi: 10.1104/pp.109.2.353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Vanlerberghe G. C., McIntosh L. Coordinate regulation of cytochrome and alternative pathway respiration in tobacco. Plant Physiol. 1992 Dec;100(4):1846–1851. doi: 10.1104/pp.100.4.1846. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Wagner A. M., Van Den Bergen CWM., Wincencjusz H. Stimulation of the Alternative Pathway by Succinate and Malate. Plant Physiol. 1995 Jul;108(3):1035–1042. doi: 10.1104/pp.108.3.1035. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES