Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1996 Jul;111(3):781–788. doi: 10.1104/pp.111.3.781

Quantification of free plus conjugated indoleacetic acid in arabidopsis requires correction for the nonenzymatic conversion of indolic nitriles.

N Llić 1, J Normanly 1, J D Cohen 1
PMCID: PMC157895  PMID: 8754680

Abstract

The genetic advantages to the use of Arabidopsis thaliana mutants for the study of auxin metabolism previously have been partially offset by the complexity of indolic metabolism in this plant and by the lack of proper methods. To address some of these problems, we developed isotopic labeling methods to determine amounts and examine the metabolism of indolic compounds in Arabidopsis. Isolation and indentification of endogenous indole-3-acetonitrile (IAN; a possible precursor of the auxin indole-3-acetic acid [IAA]) was carried out under mild conditions, thus proving its natural occurrence. We describe here the synthesis of 13C1-labeled IAN and its utility in the gas chromatography-mass spectrometry quantification of endogenous IAN levels. We also quantified the nonenzymatic conversion of IAN to IAA under conditions used to hydrolyze IAA conjugates. 13C1-Labeled IAN was used to assess the contribution of IAN to measured IAA following hydrolysis of IAA conjugates. We studied the stability and breakdown of the indolic glucosinolate glucobrassicin, which is known to be present in Arabidopsis. This is potentially an important concern when using Arabidopsis for studies of indolic biochemistry, since the levels of indolic auxins and auxin precursors are well below the levels of the indolic glucosinolates. We found that under conditions of extraction and base hydrolysis, formation of IAA from glucobrassicin was negligible.

Full Text

The Full Text of this article is available as a PDF (706.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BRUICE T. C. The mechanisms for chymotrypsin. Proc Natl Acad Sci U S A. 1961 Dec 15;47:1924–1928. doi: 10.1073/pnas.47.12.1924. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baldi B. G., Maher B. R., Cohen J. D. Hydrolysis of indole-3-acetic Acid esters exposed to mild alkaline conditions. Plant Physiol. 1989 Sep;91(1):9–12. doi: 10.1104/pp.91.1.9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bandurski R. S., Schulze A. Concentration of Indole-3-acetic Acid and Its Derivatives in Plants. Plant Physiol. 1977 Aug;60(2):211–213. doi: 10.1104/pp.60.2.211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bialek K., Cohen J. D. Quantitation of indoleacetic Acid conjugates in bean seeds by direct tissue hydrolysis. Plant Physiol. 1989 Jun;90(2):398–400. doi: 10.1104/pp.90.2.398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Boerjan W., Cervera M. T., Delarue M., Beeckman T., Dewitte W., Bellini C., Caboche M., Van Onckelen H., Van Montagu M., Inzé D. Superroot, a recessive mutation in Arabidopsis, confers auxin overproduction. Plant Cell. 1995 Sep;7(9):1405–1419. doi: 10.1105/tpc.7.9.1405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chen K. H., Miller A. N., Patterson G. W., Cohen J. D. A Rapid and Simple Procedure for Purification of Indole-3-Acetic Acid Prior to GC-SIM-MS Analysis. Plant Physiol. 1988 Mar;86(3):822–825. doi: 10.1104/pp.86.3.822. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cohen J. D., Baldi B. G., Slovin J. P. C(6)-[benzene ring]-indole-3-acetic Acid: a new internal standard for quantitative mass spectral analysis of indole-3-acetic Acid in plants. Plant Physiol. 1986 Jan;80(1):14–19. doi: 10.1104/pp.80.1.14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ehmann A. The van urk-Salkowski reagent--a sensitive and specific chromogenic reagent for silica gel thin-layer chromatographic detection and identification of indole derivatives. J Chromatogr. 1977 Feb 11;132(2):267–276. doi: 10.1016/s0021-9673(00)89300-0. [DOI] [PubMed] [Google Scholar]
  9. Haughn G. W., Davin L., Giblin M., Underhill E. W. Biochemical Genetics of Plant Secondary Metabolites in Arabidopsis thaliana: The Glucosinolates. Plant Physiol. 1991 Sep;97(1):217–226. doi: 10.1104/pp.97.1.217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. King J. J., Stimart D. P., Fisher R. H., Bleecker A. B. A Mutation Altering Auxin Homeostasis and Plant Morphology in Arabidopsis. Plant Cell. 1995 Dec;7(12):2023–2037. doi: 10.1105/tpc.7.12.2023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Last R. L., Bissinger P. H., Mahoney D. J., Radwanski E. R., Fink G. R. Tryptophan mutants in Arabidopsis: the consequences of duplicated tryptophan synthase beta genes. Plant Cell. 1991 Apr;3(4):345–358. doi: 10.1105/tpc.3.4.345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Normanly J., Slovin J. P., Cohen J. D. Rethinking Auxin Biosynthesis and Metabolism. Plant Physiol. 1995 Feb;107(2):323–329. doi: 10.1104/pp.107.2.323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. STOWE B. B. Synthesis of high specific activity C14-carboxyl indoleacetic acid and of C14-nitrile indoleacetonitrile. Anal Biochem. 1963 Feb;5:107–115. doi: 10.1016/0003-2697(63)90017-4. [DOI] [PubMed] [Google Scholar]
  14. Sutter E. G., Cohen J. D. Measurement of indolebutyric Acid in plant tissues by isotope dilution gas chromatography-mass spectrometry analysis. Plant Physiol. 1992 Aug;99(4):1719–1722. doi: 10.1104/pp.99.4.1719. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES