Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1996 Jul;111(3):877–883. doi: 10.1104/pp.111.3.877

Sugar regulation of harvest-related genes in asparagus.

K M Davies 1, J F Seelye 1, D E Irving 1, W M Borst 1, P L Hurst 1, G A King 1
PMCID: PMC157906  PMID: 8754687

Abstract

The signals controlling the abundance of transcripts up-regulated (pTIP27, pTIP31, and pTIP32) or down-regulated (pTIP20 and pTIP21) after harvest in asparagus (Asparagus officinalis L.) spears were examined. pTIP27 and pTIP31 are known to encode asparagine synthetase (AS) and a beta-galactosidase (beta-gal) homolog, respectively. The nucleotide sequences of pTIP20, pTIP21, and pTIP32 were determined, and they encode histone 3, histone 2B, and an unknown product, respectively. Changes in respiration, soluble sugars, and abundance of the five mRNAs were similar in the tips stored as 30-mm lengths or as part of 180-mm spears. We previously hypothesized that sugars may regulate the level of AS transcripts in asparagus tissue. Asparagus cell cultures were used to test the role of sugar status may regulate the level of AS transcripts in asparagus tissue. Asparagus cell cultures were used to test the role of sugar status in regulating gene expression. Transcript abundance for AS, beta-gal, and pTIP32 was low in cells in sugar-containing medium but increased within 12 h after transferring cells to a sugar-free medium. Histone 3 and histone 2B transcripts were, in general, abundant in cells on sugar-containing medium but declined in abundance when transferred to sugar-free medium. When cells were returned to sugar-containing medium the abundance of transcripts for histone 3 and histone 2B increased, whereas that for AS, beta-gal, and pTIP32 decreased. Soluble sugar levels are known to decline rapidly in the tips of harvested spears. Metabolic regulation by sugar status may have a major influence on gene expression in asparagus spears and other tissue after harvest.

Full Text

The Full Text of this article is available as a PDF (1.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chen M. H., Liu L. F., Chen Y. R., Wu H. K., Yu S. M. Expression of alpha-amylases, carbohydrate metabolism, and autophagy in cultured rice cells is coordinately regulated by sugar nutrient. Plant J. 1994 Nov;6(5):625–636. doi: 10.1046/j.1365-313x.1994.6050625.x. [DOI] [PubMed] [Google Scholar]
  2. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  3. Church G. M., Gilbert W. Genomic sequencing. Proc Natl Acad Sci U S A. 1984 Apr;81(7):1991–1995. doi: 10.1073/pnas.81.7.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Davies K. M., King G. A. Isolation and characterization of a cDNA clone for a harvest-induced asparagine synthetase from Asparagus officinalis L. Plant Physiol. 1993 Aug;102(4):1337–1340. doi: 10.1104/pp.102.4.1337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Graham I. A., Denby K. J., Leaver C. J. Carbon Catabolite Repression Regulates Glyoxylate Cycle Gene Expression in Cucumber. Plant Cell. 1994 May;6(5):761–772. doi: 10.1105/tpc.6.5.761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. King G. A., Davies K. M. Cloning of a harvest-induced beta-galactosidase from tips of harvested asparagus spears. Plant Physiol. 1995 May;108(1):419–420. doi: 10.1104/pp.108.1.419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. King G. A., Davies K. M. Identification, cDNA Cloning, and Analysis of mRNAs Having Altered Expression in Tips of Harvested Asparagus Spears. Plant Physiol. 1992 Dec;100(4):1661–1669. doi: 10.1104/pp.100.4.1661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Lam H. M., Peng S. S., Coruzzi G. M. Metabolic regulation of the gene encoding glutamine-dependent asparagine synthetase in Arabidopsis thaliana. Plant Physiol. 1994 Dec;106(4):1347–1357. doi: 10.1104/pp.106.4.1347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Minami M., Huh G. H., Yang P., Iwabuchi M. Coordinate gene expression of five subclass histones and the putative transcription factors, HBP-1a and HBP-1b, of histone genes in wheat. Plant Mol Biol. 1993 Oct;23(2):429–434. doi: 10.1007/BF00029019. [DOI] [PubMed] [Google Scholar]
  10. Ohtsubo N., Nakayama T., Terada R., Shimamoto K., Iwabuchi M. Proximal promoter region of the wheat histone H3 gene confers S phase-specific gene expression in transformed rice cells. Plant Mol Biol. 1993 Nov;23(3):553–565. doi: 10.1007/BF00019303. [DOI] [PubMed] [Google Scholar]
  11. Peng Z. G., Wu R. A simple and rapid nucleotide sequencing strategy and its application in analyzing a rice histone 3 gene. Gene. 1986;45(3):247–252. doi: 10.1016/0378-1119(86)90022-3. [DOI] [PubMed] [Google Scholar]
  12. Raghothama K. G., Lawton K. A., Goldsbrough P. B., Woodson W. R. Characterization of an ethylene-regulated flower senescence-related gene from carnation. Plant Mol Biol. 1991 Jul;17(1):61–71. doi: 10.1007/BF00036806. [DOI] [PubMed] [Google Scholar]
  13. Richards K. D., Snowden K. C., Gardner R. C. Wali6 and wali7. Genes induced by aluminum in wheat (Triticum aestivum L.) roots. Plant Physiol. 1994 Aug;105(4):1455–1456. doi: 10.1104/pp.105.4.1455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Seurinck J., Truettner J., Goldberg R. B. The nucleotide sequence of an anther-specific gene. Nucleic Acids Res. 1990 Jun 11;18(11):3403–3403. doi: 10.1093/nar/18.11.3403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Terada R., Nakayama T., Iwabuchi M., Shimamoto K. A wheat histone H3 promoter confers cell division-dependent and -independent expression of the gus A gene in transgenic rice plants. Plant J. 1993 Feb;3(2):241–252. doi: 10.1046/j.1365-313x.1993.t01-16-00999.x. [DOI] [PubMed] [Google Scholar]
  17. Tsai F. Y., Coruzzi G. M. Dark-induced and organ-specific expression of two asparagine synthetase genes in Pisum sativum. EMBO J. 1990 Feb;9(2):323–332. doi: 10.1002/j.1460-2075.1990.tb08114.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Tsai F. Y., Coruzzi G. Light represses transcription of asparagine synthetase genes in photosynthetic and nonphotosynthetic organs of plants. Mol Cell Biol. 1991 Oct;11(10):4966–4972. doi: 10.1128/mcb.11.10.4966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Yang P., Katsura M., Nakayama T., Mikami K., Iwabuchi M. Molecular cloning and nucleotide sequences of cDNAs for histone H1 and H2B variants from wheat. Nucleic Acids Res. 1991 Sep 25;19(18):5077–5077. doi: 10.1093/nar/19.18.5077. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES