Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1996 Jul;111(3):885–891. doi: 10.1104/pp.111.3.885

Relationship between Active Oxygen Species, Lipid Peroxidation, Necrosis, and Phytoalexin Production Induced by Elicitins in Nicotiana.

C Rusterucci 1, V Stallaert 1, M L Milat 1, A Pugin 1, P Ricci 1, J P Blein 1
PMCID: PMC157907  PMID: 12226334

Abstract

Excised leaves of Nicotiana tabacum var Xanthi and Nicotiana rustica were treated with cryptogein and capsicein, basic and acidic elicitins, respectively. Both compounds induced leaf necrosis, the intensity of which depended on concentration and duration of treatment. N. tabacum var Xanthi was the most sensitive species and cryptogein was the most active elicitin. Lipid peroxidation in elicitin-treated Nicotiana leaves was closely correlated with the appearance of necrosis. Elicitin treatments induced a rapid and transient burst of active oxygen species (AOS) in cell cultures of both Nicotiana species, with the production by Xanthi cells being 6-fold greater than that by N. rustica. Similar maximum AOS production levels were observed with both elicitins, but capsicein required 10-fold higher concentrations than those of cryptogein. Phytoalexin production was lower in response to both elicitins in N. tabacum var Xanthi cells than in N. rustica cells, and capsicein was the most efficient elicitor of this response. In cryptogein-treated cell suspensions, phytoalexin synthesis was unaffected by diphenyleneiodonium, which inhibited AOS generation, nor was it affected by tiron or catalase, which suppressed AOS accumulation in the extracellular medium. These results suggest that AOS production, lipid peroxidation, and necrosis are directly related, whereas phytoalexin production depends on neither the presence nor the intensity of these responses.

Full Text

The Full Text of this article is available as a PDF (769.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Apostol I., Heinstein P. F., Low P. S. Rapid Stimulation of an Oxidative Burst during Elicitation of Cultured Plant Cells : Role in Defense and Signal Transduction. Plant Physiol. 1989 May;90(1):109–116. doi: 10.1104/pp.90.1.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baker C. J., Orlandi E. W., Mock N. M. Harpin, An Elicitor of the Hypersensitive Response in Tobacco Caused by Erwinia amylovora, Elicits Active Oxygen Production in Suspension Cells. Plant Physiol. 1993 Aug;102(4):1341–1344. doi: 10.1104/pp.102.4.1341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blein J. P., Milat M. L., Ricci P. Responses of Cultured Tobacco Cells to Cryptogein, a Proteinaceous Elicitor from Phytophthora cryptogea: Possible Plasmalemma Involvement. Plant Physiol. 1991 Feb;95(2):486–491. doi: 10.1104/pp.95.2.486. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Degousee N., Triantaphylides C., Montillet J. L. Involvement of Oxidative Processes in the Signaling Mechanisms Leading to the Activation of Glyceollin Synthesis in Soybean (Glycine max). Plant Physiol. 1994 Mar;104(3):945–952. doi: 10.1104/pp.104.3.945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Devlin W. S., Gustine D. L. Involvement of the oxidative burst in phytoalexin accumulation and the hypersensitive reaction. Plant Physiol. 1992 Nov;100(3):1189–1195. doi: 10.1104/pp.100.3.1189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Green R., Fluhr R. UV-B-Induced PR-1 Accumulation Is Mediated by Active Oxygen Species. Plant Cell. 1995 Feb;7(2):203–212. doi: 10.1105/tpc.7.2.203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kumar GNM., Knowles N. R. Changes in Lipid Peroxidation and Lipolytic and Free-Radical Scavenging Enzyme Activities during Aging and Sprouting of Potato (Solanum tuberosum) Seed-Tubers. Plant Physiol. 1993 May;102(1):115–124. doi: 10.1104/pp.102.1.115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Legendre L., Rueter S., Heinstein P. F., Low P. S. Characterization of the Oligogalacturonide-Induced Oxidative Burst in Cultured Soybean (Glycine max) Cells. Plant Physiol. 1993 May;102(1):233–240. doi: 10.1104/pp.102.1.233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Maccarrone M., Bladergroen M. R., Rosato N., Finazzi Agrò A. F. Role of lipid peroxidation in electroporation-induced cell permeability. Biochem Biophys Res Commun. 1995 Apr 17;209(2):417–425. doi: 10.1006/bbrc.1995.1519. [DOI] [PubMed] [Google Scholar]
  10. Mehdy M. C. Active Oxygen Species in Plant Defense against Pathogens. Plant Physiol. 1994 Jun;105(2):467–472. doi: 10.1104/pp.105.2.467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Nürnberger T., Nennstiel D., Jabs T., Sacks W. R., Hahlbrock K., Scheel D. High affinity binding of a fungal oligopeptide elicitor to parsley plasma membranes triggers multiple defense responses. Cell. 1994 Aug 12;78(3):449–460. doi: 10.1016/0092-8674(94)90423-5. [DOI] [PubMed] [Google Scholar]
  12. Preisig C. L., Kuć J. A. Arachidonic acid-related elicitors of the hypersensitive response in potato and enhancement of their activities by glucans from Phytophthora infestans (Mont.) deBary. Arch Biochem Biophys. 1985 Jan;236(1):379–389. doi: 10.1016/0003-9861(85)90638-1. [DOI] [PubMed] [Google Scholar]
  13. Ricci P., Bonnet P., Huet J. C., Sallantin M., Beauvais-Cante F., Bruneteau M., Billard V., Michel G., Pernollet J. C. Structure and activity of proteins from pathogenic fungi Phytophthora eliciting necrosis and acquired resistance in tobacco. Eur J Biochem. 1989 Aug 15;183(3):555–563. doi: 10.1111/j.1432-1033.1989.tb21084.x. [DOI] [PubMed] [Google Scholar]
  14. Rogers K. R., Albert F., Anderson A. J. Lipid peroxidation is a consequence of elicitor activity. Plant Physiol. 1988 Feb;86(2):547–553. doi: 10.1104/pp.86.2.547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Sessa G., Yang X. Q., Raz V., Eyal Y., Fluhr R. Dark induction and subcellular localization of the pathogenesis-related PRB-1b protein. Plant Mol Biol. 1995 Jun;28(3):537–547. doi: 10.1007/BF00020400. [DOI] [PubMed] [Google Scholar]
  16. Vera-Estrella R., Blumwald E., Higgins V. J. Effect of Specific Elicitors of Cladosporium fulvum on Tomato Suspension Cells : Evidence for the Involvement of Active Oxygen Species. Plant Physiol. 1992 Jul;99(3):1208–1215. doi: 10.1104/pp.99.3.1208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Viard M. P., Martin F., Pugin A., Ricci P., Blein J. P. Protein Phosphorylation Is Induced in Tobacco Cells by the Elicitor Cryptogein. Plant Physiol. 1994 Apr;104(4):1245–1249. doi: 10.1104/pp.104.4.1245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Yu L. M. Elicitins from Phytophthora and basic resistance in tobacco. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4088–4094. doi: 10.1073/pnas.92.10.4088. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES