Abstract
To identify possible iron sources for bacteroids in planta, soybean (Glycine max L. Merr.) symbiosomes (consisting of the bacteroid-containing peribacteroid space enclosed by the peribacteroid membrane [PBM]) and bacteroids were assayed for the ability to transport iron supplied as various ferric [Fe(III)]-chelates. Iron presented as a number of Fe(III)-chelates was transported at much higher rates across the PBM than across the bacteroid membranes, suggesting the presence of an iron storage pool in the peribacteroid space. Pulse-chase experiments confirmed the presence of such an iron storage pool. Because the PBM is derived from the plant plasma membrane, we reasoned that it may possess a ferric-chelate reductase activity similar to that present in plant plasma membrane. We detected ferric-chelate reductase activity associated with the PBM and suggest that reduction of Fe(III) to ferrous [Fe(II)] plays a role in the movement of iron into soybean symbiosomes.
Full Text
The Full Text of this article is available as a PDF (919.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barsomian G. D., Urzainqui A., Lohman K., Walker G. C. Rhizobium meliloti mutants unable to synthesize anthranilate display a novel symbiotic phenotype. J Bacteriol. 1992 Jul;174(13):4416–4426. doi: 10.1128/jb.174.13.4416-4426.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blumwald E., Fortin M. G., Rea P. A., Verma D. P., Poole R. J. Presence of Host-Plasma Membrane Type H-ATPase in the Membrane Envelope Enclosing the Bacteroids in Soybean Root Nodules. Plant Physiol. 1985 Aug;78(4):665–672. doi: 10.1104/pp.78.4.665. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carson K. C., Holliday S., Glenn A. R., Dilworth M. J. Siderophore and organic acid production in root nodule bacteria. Arch Microbiol. 1992;157(3):264–271. doi: 10.1007/BF00245160. [DOI] [PubMed] [Google Scholar]
- Cowart R. E., Singleton F. L., Hind J. S. A comparison of bathophenanthrolinedisulfonic acid and ferrozine as chelators of iron(II) in reduction reactions. Anal Biochem. 1993 May 15;211(1):151–155. doi: 10.1006/abio.1993.1246. [DOI] [PubMed] [Google Scholar]
- Dilworth M. J., Kidby D. K. Localization of iron and leghaemoglobin in the legume root nodule by electron microscope autoradiography. Exp Cell Res. 1968 Jan;49(1):148–149. doi: 10.1016/0014-4827(68)90527-2. [DOI] [PubMed] [Google Scholar]
- Guerinot M. L., Meidl E. J., Plessner O. Citrate as a siderophore in Bradyrhizobium japonicum. J Bacteriol. 1990 Jun;172(6):3298–3303. doi: 10.1128/jb.172.6.3298-3303.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guerinot M. L., Yi Y. Iron: Nutritious, Noxious, and Not Readily Available. Plant Physiol. 1994 Mar;104(3):815–820. doi: 10.1104/pp.104.3.815. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Herrada G., Puppo A., Moreau S., Day D. A., Rigaud J. How is leghemoglobin involved in peribacteroid membrane degradation during nodule senescence? FEBS Lett. 1993 Jul 12;326(1-3):33–38. doi: 10.1016/0014-5793(93)81755-o. [DOI] [PubMed] [Google Scholar]
- Holden M. J., Luster D. G., Chaney R. L., Buckhout T. J., Robinson C. Fe-Chelate Reductase Activity of Plasma Membranes Isolated from Tomato (Lycopersicon esculentum Mill.) Roots : Comparison of Enzymes from Fe-Deficient and Fe-Sufficient Roots. Plant Physiol. 1991 Oct;97(2):537–544. doi: 10.1104/pp.97.2.537. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jacobs J. M., Jacobs N. J. Terminal enzymes of heme biosynthesis in the plant plasma membrane. Arch Biochem Biophys. 1995 Nov 10;323(2):274–278. doi: 10.1006/abbi.1995.9964. [DOI] [PubMed] [Google Scholar]
- Jordan I., Kaplan J. The mammalian transferrin-independent iron transport system may involve a surface ferrireductase activity. Biochem J. 1994 Sep 15;302(Pt 3):875–879. doi: 10.1042/bj3020875. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Langman L., Young I. G., Frost G. E., Rosenberg H., Gibson F. Enterochelin system of iron transport in Escherichia coli: mutations affecting ferric-enterochelin esterase. J Bacteriol. 1972 Dec;112(3):1142–1149. doi: 10.1128/jb.112.3.1142-1149.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lesuisse E., Raguzzi F., Crichton R. R. Iron uptake by the yeast Saccharomyces cerevisiae: involvement of a reduction step. J Gen Microbiol. 1987 Nov;133(11):3229–3236. doi: 10.1099/00221287-133-11-3229. [DOI] [PubMed] [Google Scholar]
- Meyer J. M. Exogenous siderophore-mediated iron uptake in Pseudomonas aeruginosa: possible involvement of porin OprF in iron translocation. J Gen Microbiol. 1992 May;138(5):951–958. doi: 10.1099/00221287-138-5-951. [DOI] [PubMed] [Google Scholar]
- Moreau S., Meyer J. M., Puppo A. Uptake of iron by symbiosomes and bacteroids from soybean nodules. FEBS Lett. 1995 Mar 20;361(2-3):225–228. doi: 10.1016/0014-5793(95)00155-3. [DOI] [PubMed] [Google Scholar]
- Ouyang L. J., Whelan J., Weaver C. D., Roberts D. M., Day D. A. Protein phosphorylation stimulates the rate of malate uptake across the peribacteroid membrane of soybean nodules. FEBS Lett. 1991 Nov 18;293(1-2):188–190. doi: 10.1016/0014-5793(91)81183-9. [DOI] [PubMed] [Google Scholar]
- Palmieri F., Klingenberg M. Direct methods for measuring metabolite transport and distribution in mitochondria. Methods Enzymol. 1979;56:279–301. doi: 10.1016/0076-6879(79)56029-7. [DOI] [PubMed] [Google Scholar]
- Raguzzi F., Lesuisse E., Crichton R. R. Iron storage in Saccharomyces cerevisiae. FEBS Lett. 1988 Apr 11;231(1):253–258. doi: 10.1016/0014-5793(88)80742-7. [DOI] [PubMed] [Google Scholar]
- Rioux C. R., Jordan D. C., Rattray J. B. Anthranilate-promoted iron uptake in Rhizobium leguminosarum. Arch Biochem Biophys. 1986 Jul;248(1):183–189. doi: 10.1016/0003-9861(86)90415-7. [DOI] [PubMed] [Google Scholar]
- Rioux C. R., Jordan D. C., Rattray J. B. Iron requirement of Rhizobium leguminosarum and secretion of anthranilic acid during growth on an iron-deficient medium. Arch Biochem Biophys. 1986 Jul;248(1):175–182. doi: 10.1016/0003-9861(86)90414-5. [DOI] [PubMed] [Google Scholar]
- Schacterle G. R., Pollack R. L. A simplified method for the quantitative assay of small amounts of protein in biologic material. Anal Biochem. 1973 Feb;51(2):654–655. doi: 10.1016/0003-2697(73)90523-x. [DOI] [PubMed] [Google Scholar]
- Streeter J. G. Carbohydrate, organic Acid, and amino Acid composition of bacteroids and cytosol from soybean nodules. Plant Physiol. 1987 Nov;85(3):768–773. doi: 10.1104/pp.85.3.768. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tiffin L. O. Iron translocation I. Plant culture, exudate sampling, iron-citrate analysis. Plant Physiol. 1966 Mar;41(3):510–514. doi: 10.1104/pp.41.3.510. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tiffin L. O. Translocation of iron citrate and phosphorus in xylem exudate of soybean. Plant Physiol. 1970 Mar;45(3):280–283. doi: 10.1104/pp.45.3.280. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Udvardi M. K., Day D. A. Electrogenic ATPase Activity on the Peribacteroid Membrane of Soybean (Glycine max L.) Root Nodules. Plant Physiol. 1989 Jul;90(3):982–987. doi: 10.1104/pp.90.3.982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Verma D. P., Kazazian V., Zogbi V., Bal A. K. Isolation and characterization of the membrane envelope enclosing the bacteroids in soybean root nodules. J Cell Biol. 1978 Sep;78(3):919–936. doi: 10.1083/jcb.78.3.919. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Verma DPS. Signals in Root Nodule Organogenesis and Endocytosis of Rhizobium. Plant Cell. 1992 Apr;4(4):373–382. doi: 10.1105/tpc.4.4.373. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wittenberg J. B., Wittenberg B. A. Mechanisms of cytoplasmic hemoglobin and myoglobin function. Annu Rev Biophys Biophys Chem. 1990;19:217–241. doi: 10.1146/annurev.bb.19.060190.001245. [DOI] [PubMed] [Google Scholar]