Abstract
The development of clustered tertiary lateral roots (proteoid roots) and the expression of phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) in roots were studied in white lupin (Lupinus albus L.) grown with either 1 mM P (+P-treated) or without P (-P-treated). The +P-treated plants initiated fewer clustered tertiary meristems and the emergence of these meristems was delayed compared with - P-treated plants. Proteoid root zones could be identified 9 d after emergence in both P treatments. Amounts of PEPC mRNA, PEPC specific activity, and enzyme protein were greater in proteoid roots than in normal roots beginning at 10, 12, and 14 d after emergence, respectively. The increases in PEPC mRNA, PEPC enzyme, and PEPC specific activity suggest that this enzyme is in part under transcriptional regulation. Recovery of organic acids from root exudates coincided with the increases in PEPC specific activity. The -P-treated plants exuded 40-, 20-, and 5-fold more citrate, malate, and succinate, respectively, than did +P-treated plants. Data presented support the hypothesis that white lupin has concerted regulation of proteoid root development, transcriptional regulation of PEPC, and biosynthesis of organic acids for exudation in response to P deficiency.
Full Text
The Full Text of this article is available as a PDF (3.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Crétin C., Santi S., Keryer E., Lepiniec L., Tagu D., Vidal J., Gadal P. The phosphoenolpyruvate carboxylase gene family of Sorghum: promoter structures, amino acid sequences and expression of genes. Gene. 1991 Mar 1;99(1):87–94. doi: 10.1016/0378-1119(91)90037-c. [DOI] [PubMed] [Google Scholar]
- Dent P., Haser W., Haystead T. A., Vincent L. A., Roberts T. M., Sturgill T. W. Activation of mitogen-activated protein kinase kinase by v-Raf in NIH 3T3 cells and in vitro. Science. 1992 Sep 4;257(5075):1404–1407. doi: 10.1126/science.1326789. [DOI] [PubMed] [Google Scholar]
- Jacobs M., Rubery P. H. Naturally occurring auxin transport regulators. Science. 1988 Jul 15;241(4863):346–349. doi: 10.1126/science.241.4863.346. [DOI] [PubMed] [Google Scholar]
- Johnson J. F., Allan D. L., Vance C. P. Phosphorus Stress-Induced Proteoid Roots Show Altered Metabolism in Lupinus albus. Plant Physiol. 1994 Feb;104(2):657–665. doi: 10.1104/pp.104.2.657. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Landsberg E. C. Function of Rhizodermal Transfer Cells in the Fe Stress Response Mechanism of Capsicum annuum L. Plant Physiol. 1986 Oct;82(2):511–517. doi: 10.1104/pp.82.2.511. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lipton D. S., Blanchar R. W., Blevins D. G. Citrate, Malate, and Succinate Concentration in Exudates from P-Sufficient and P-Stressed Medicago sativa L. Seedlings. Plant Physiol. 1987 Oct;85(2):315–317. doi: 10.1104/pp.85.2.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Löffler A., Abel S., Jost W., Beintema J. J., Glund K. Phosphate-Regulated Induction of Intracellular Ribonucleases in Cultured Tomato (Lycopersicon esculentum) Cells. Plant Physiol. 1992 Apr;98(4):1472–1478. doi: 10.1104/pp.98.4.1472. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miller S. S., Boylan K. L., Vance C. P. Alfalfa Root Nodule Carbon Dioxide Fixation : III. Immunological Studies of Nodule Phosphoenolpyruvate Carboxylase. Plant Physiol. 1987 Jun;84(2):501–508. doi: 10.1104/pp.84.2.501. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nürnberger T., Abel S., Jost W., Glund K. Induction of an Extracellular Ribonuclease in Cultured Tomato Cells upon Phosphate Starvation. Plant Physiol. 1990 Apr;92(4):970–976. doi: 10.1104/pp.92.4.970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ostrem J. A., Olson S. W., Schmitt J. M., Bohnert H. J. Salt Stress Increases the Level of Translatable mRNA for Phosphoenolpyruvate Carboxylase in Mesembryanthemum crystallinum. Plant Physiol. 1987 Aug;84(4):1270–1275. doi: 10.1104/pp.84.4.1270. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schmitt J. M., Piepenbrock M. Regulation of Phosphoenolpyruvate Carboxylase and Crassulacean Acid Metabolism Induction in Mesembryanthemum crystallinum L. by Cytokinin : Modulation of Leaf Gene Expression by Roots? Plant Physiol. 1992 Aug;99(4):1664–1669. doi: 10.1104/pp.99.4.1664. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schuller K. A., Werner D. Phosphorylation of Soybean (Glycine max L.) Nodule Phosphoenolpyruvate Carboxylase in Vitro Decreases Sensitivity to Inhibition by L-Malate. Plant Physiol. 1993 Apr;101(4):1267–1273. doi: 10.1104/pp.101.4.1267. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Theodorou M. E., Cornel F. A., Duff S. M., Plaxton W. C. Phosphate starvation-inducible synthesis of the alpha-subunit of the pyrophosphate-dependent phosphofructokinase in black mustard suspension cells. J Biol Chem. 1992 Oct 25;267(30):21901–21905. [PubMed] [Google Scholar]
- Theodorou M. E., Elrifi I. R., Turpin D. H., Plaxton W. C. Effects of Phosphorus Limitation on Respiratory Metabolism in the Green Alga Selenastrum minutum. Plant Physiol. 1991 Apr;95(4):1089–1095. doi: 10.1104/pp.95.4.1089. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Usuda H., Shimogawara K. Phosphate Deficiency in Maize : III. Changes in Enzyme Activities during the Course of Phosphate Deprivation. Plant Physiol. 1992 Aug;99(4):1680–1685. doi: 10.1104/pp.99.4.1680. [DOI] [PMC free article] [PubMed] [Google Scholar]