Abstract
Somatic embryos of jack, a Glycine max (L.) Merrill cultivar, were transformed using microprojectile bombardment with a synthetic Bacillus thuringiensis insecticidal crystal protein gene (Bt cryIAc) driven by the 35S promoter and linked to the HPH gene. Approximately 10 g of tissue was bombarded, and three transgenic lines were selected on hygromycin-containing media and converted into plants. The recovered lines contained the HPH gene, but the Bt gene was lost in one line. The plasmid was rearranged in the second line, and the third line had two copies, one of which was rear-ranged. The CryIAc protein accumulated up to 46 ng mg-1 extractable protein. In detached-leaf bioassays, plants with an intact copy of the Bt gene, and to a lesser extent those with the rearranged copy, were protected from damage from corn earworm (Helicoverpa zea), soybean looper (Pseudoplusia includens), tobacco budworm (Heliothis virescens), and velvetbean caterpillar (Anticarsia gemmatalis). Corn earworm produced less than 3% defoliation on transgenic plants, compared with 20% on the lepidopteran-resistant breeding line GatIR81-296, and more than 40% on susceptible cultivars. Unlike previous reports of soybean transformation using this technique, all plants were fertile. To our knowledge, this is the first report of a soybean transgenic for a highly expressed insecticidal gene.
Full Text
The Full Text of this article is available as a PDF (2.6 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adang M. J., Brody M. S., Cardineau G., Eagan N., Roush R. T., Shewmaker C. K., Jones A., Oakes J. V., McBride K. E. The reconstruction and expression of a Bacillus thuringiensis cryIIIA gene in protoplasts and potato plants. Plant Mol Biol. 1993 Mar;21(6):1131–1145. doi: 10.1007/BF00023609. [DOI] [PubMed] [Google Scholar]
- Alstad D. N., Andow D. A. Managing the evolution of insect resistance to transgenic plants. Science. 1995 Jun 30;268(5219):1894–1896. doi: 10.1126/science.268.5219.1894. [DOI] [PubMed] [Google Scholar]
- Barton K. A., Whiteley H. R., Yang N. S. Bacillus thuringiensis section sign-Endotoxin Expressed in Transgenic Nicotiana tabacum Provides Resistance to Lepidopteran Insects. Plant Physiol. 1987 Dec;85(4):1103–1109. doi: 10.1104/pp.85.4.1103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Evans M. R., Bertera A. L., Harris D. W. The Southern blot. An update. Mol Biotechnol. 1994 Feb;1(1):1–12. doi: 10.1007/BF02821507. [DOI] [PubMed] [Google Scholar]
- Garczynski S. F., Crim J. W., Adang M. J. Identification of putative insect brush border membrane-binding molecules specific to Bacillus thuringiensis delta-endotoxin by protein blot analysis. Appl Environ Microbiol. 1991 Oct;57(10):2816–2820. doi: 10.1128/aem.57.10.2816-2820.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gordon-Kamm W. J., Spencer T. M., Mangano M. L., Adams T. R., Daines R. J., Start W. G., O'Brien J. V., Chambers S. A., Adams W. R., Jr, Willetts N. G. Transformation of Maize Cells and Regeneration of Fertile Transgenic Plants. Plant Cell. 1990 Jul;2(7):603–618. doi: 10.1105/tpc.2.7.603. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McGaughey W. H., Whalon M. E. Managing Insect Resistance to Bacillus thuringiensis Toxins. Science. 1992 Nov 27;258(5087):1451–1455. doi: 10.1126/science.258.5087.1451. [DOI] [PubMed] [Google Scholar]
- Murray E. E., Rocheleau T., Eberle M., Stock C., Sekar V., Adang M. Analysis of unstable RNA transcripts of insecticidal crystal protein genes of Bacillus thuringiensis in transgenic plants and electroporated protoplasts. Plant Mol Biol. 1991 Jun;16(6):1035–1050. doi: 10.1007/BF00016075. [DOI] [PubMed] [Google Scholar]
- Perlak F. J., Deaton R. W., Armstrong T. A., Fuchs R. L., Sims S. R., Greenplate J. T., Fischhoff D. A. Insect resistant cotton plants. Biotechnology (N Y) 1990 Oct;8(10):939–943. doi: 10.1038/nbt1090-939. [DOI] [PubMed] [Google Scholar]
- Stewart Jr C. N., Adang M. J., All J. N., Raymer P. L., Ramachandran S., Parrott W. A. Insect Control and Dosage Effects in Transgenic Canola Containing a Synthetic Bacillus thuringiensis cryIAc Gene. Plant Physiol. 1996 Sep;112(1):115–120. doi: 10.1104/pp.112.1.115. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stewart C. N., Jr, Via L. E. A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications. Biotechniques. 1993 May;14(5):748–750. [PubMed] [Google Scholar]
- Vancanneyt G., Schmidt R., O'Connor-Sanchez A., Willmitzer L., Rocha-Sosa M. Construction of an intron-containing marker gene: splicing of the intron in transgenic plants and its use in monitoring early events in Agrobacterium-mediated plant transformation. Mol Gen Genet. 1990 Jan;220(2):245–250. doi: 10.1007/BF00260489. [DOI] [PubMed] [Google Scholar]
- Yeung M. C., Lau A. S. Fast and economical large-scale preparation of high-quality plasmid DNA. Biotechniques. 1993 Sep;15(3):381–382. [PubMed] [Google Scholar]
- van Wordragen M. F., Honée G., Dons H. J. Insect-resistant chrysanthemum calluses by introduction of a Bacillus thuringiensis crystal protein gene. Transgenic Res. 1993 May;2(3):170–180. doi: 10.1007/BF01972611. [DOI] [PubMed] [Google Scholar]