Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1996 Sep;112(1):141–148. doi: 10.1104/pp.112.1.141

Analysis of Cytokinin Metabolism in ipt Transgenic Tobacco by Liquid Chromatography-Tandem Mass Spectrometry.

P Redig 1, T Schmulling 1, H Van Onckelen 1
PMCID: PMC157933  PMID: 12226381

Abstract

The endogenous levels of the major, naturally occurring cytokinins in Pisum sativum ribulose-1,5-bisphosphate carboxylase small subunit promoter-isopentenyl transferase gene (Pssu-ipt)-transformed tobacco (Nicotiana tabacum L.) callus were quantified using electrospray-liquid chromatography-tandem mass spectrometry during a 6-week subcultivation period. An ipt gene was expressed under control of a tetracycline-inducible promoter for a more detailed study of cytokinin accumulation and metabolism. Activation of the ipt in both expression systems resulted in the production of mainly zeatin-type cytokinins. No accumulation of isopentenyladenine or isopentenyladenosine was observed. In Pssu-ipt-transformed calli, as well as in the tetracycline-inducible ipt leaves, metabolic inactivation occurred through O-glucoside conjugation. No significant elevation of cytokinin N-glucosides levels was observed. Side-chain reduction to dihydrozeatin-type cytokinins was observed in both systems. The levels of the endogenous cytokinins varied in time and were subject to homeostatic regulatory mechanisms. Feeding experiments of ipt transgenic callus with [3H]isopentenyladenine and [3H]isopentenyladenosine mainly led to labeled adenine-like compounds, which are degradation products from cytokininoxidase activity. Incorporation of radioactivity in zeatin riboside was observed, although to a much lesser extent.

Full Text

The Full Text of this article is available as a PDF (757.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akiyoshi D. E., Klee H., Amasino R. M., Nester E. W., Gordon M. P. T-DNA of Agrobacterium tumefaciens encodes an enzyme of cytokinin biosynthesis. Proc Natl Acad Sci U S A. 1984 Oct;81(19):5994–5998. doi: 10.1073/pnas.81.19.5994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barry G. F., Rogers S. G., Fraley R. T., Brand L. Identification of a cloned cytokinin biosynthetic gene. Proc Natl Acad Sci U S A. 1984 Aug;81(15):4776–4780. doi: 10.1073/pnas.81.15.4776. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chen C. M., Melitz D. K. Cytokinin biosynthesis in a cell-free system from cytokinin-autotrophic tobacco tissue cultures. FEBS Lett. 1979 Nov 1;107(1):15–20. doi: 10.1016/0014-5793(79)80452-4. [DOI] [PubMed] [Google Scholar]
  4. Gatz C., Frohberg C., Wendenburg R. Stringent repression and homogeneous de-repression by tetracycline of a modified CaMV 35S promoter in intact transgenic tobacco plants. Plant J. 1992 May;2(3):397–404. doi: 10.1111/j.1365-313x.1992.00397.x. [DOI] [PubMed] [Google Scholar]
  5. Martin R. C., Mok M. C., Shaw G., Mok D. W. An enzyme mediating the conversion of zeatin to dihydrozeatin in phaseolus embryos. Plant Physiol. 1989 Aug;90(4):1630–1635. doi: 10.1104/pp.90.4.1630. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Medford J. I., Horgan R., El-Sawi Z., Klee H. J. Alterations of Endogenous Cytokinins in Transgenic Plants Using a Chimeric Isopentenyl Transferase Gene. Plant Cell. 1989 Apr;1(4):403–413. doi: 10.1105/tpc.1.4.403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Miura G., Hall R. H. trans-Ribosylzeatin: Its Biosynthesis in Zea mays Endosperm and the Mycorrhizal Fungus, Rhizopogon roseolus. Plant Physiol. 1973 Mar;51(3):563–569. doi: 10.1104/pp.51.3.563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Prinsen E., Redig P., Strnad M., Galís I., Van Dongen W., Van Onckelen H. Quantifying phytohormones in transformed plants. Methods Mol Biol. 1995;44:245–262. doi: 10.1385/0-89603-302-3:245. [DOI] [PubMed] [Google Scholar]
  9. Sembdner G., Atzorn R., Schneider G. Plant hormone conjugation. Plant Mol Biol. 1994 Dec;26(5):1459–1481. doi: 10.1007/BF00016485. [DOI] [PubMed] [Google Scholar]
  10. Smigocki A. C. Cytokinin content and tissue distribution in plants transformed by a reconstructed isopentenyl transferase gene. Plant Mol Biol. 1991 Jan;16(1):105–115. doi: 10.1007/BF00017921. [DOI] [PubMed] [Google Scholar]
  11. Terrine C., Laloue M. Kinetics of N-(Delta-Isopentenyl)Adenosine Degradation in Tobacco Cells: EVIDENCE OF A REGULATORY MECHANISM UNDER THE CONTROL OF CYTOKININS. Plant Physiol. 1980 Jun;65(6):1090–1095. doi: 10.1104/pp.65.6.1090. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES