Abstract
The endogenous levels of the major, naturally occurring cytokinins in Pisum sativum ribulose-1,5-bisphosphate carboxylase small subunit promoter-isopentenyl transferase gene (Pssu-ipt)-transformed tobacco (Nicotiana tabacum L.) callus were quantified using electrospray-liquid chromatography-tandem mass spectrometry during a 6-week subcultivation period. An ipt gene was expressed under control of a tetracycline-inducible promoter for a more detailed study of cytokinin accumulation and metabolism. Activation of the ipt in both expression systems resulted in the production of mainly zeatin-type cytokinins. No accumulation of isopentenyladenine or isopentenyladenosine was observed. In Pssu-ipt-transformed calli, as well as in the tetracycline-inducible ipt leaves, metabolic inactivation occurred through O-glucoside conjugation. No significant elevation of cytokinin N-glucosides levels was observed. Side-chain reduction to dihydrozeatin-type cytokinins was observed in both systems. The levels of the endogenous cytokinins varied in time and were subject to homeostatic regulatory mechanisms. Feeding experiments of ipt transgenic callus with [3H]isopentenyladenine and [3H]isopentenyladenosine mainly led to labeled adenine-like compounds, which are degradation products from cytokininoxidase activity. Incorporation of radioactivity in zeatin riboside was observed, although to a much lesser extent.
Full Text
The Full Text of this article is available as a PDF (757.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akiyoshi D. E., Klee H., Amasino R. M., Nester E. W., Gordon M. P. T-DNA of Agrobacterium tumefaciens encodes an enzyme of cytokinin biosynthesis. Proc Natl Acad Sci U S A. 1984 Oct;81(19):5994–5998. doi: 10.1073/pnas.81.19.5994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barry G. F., Rogers S. G., Fraley R. T., Brand L. Identification of a cloned cytokinin biosynthetic gene. Proc Natl Acad Sci U S A. 1984 Aug;81(15):4776–4780. doi: 10.1073/pnas.81.15.4776. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen C. M., Melitz D. K. Cytokinin biosynthesis in a cell-free system from cytokinin-autotrophic tobacco tissue cultures. FEBS Lett. 1979 Nov 1;107(1):15–20. doi: 10.1016/0014-5793(79)80452-4. [DOI] [PubMed] [Google Scholar]
- Gatz C., Frohberg C., Wendenburg R. Stringent repression and homogeneous de-repression by tetracycline of a modified CaMV 35S promoter in intact transgenic tobacco plants. Plant J. 1992 May;2(3):397–404. doi: 10.1111/j.1365-313x.1992.00397.x. [DOI] [PubMed] [Google Scholar]
- Martin R. C., Mok M. C., Shaw G., Mok D. W. An enzyme mediating the conversion of zeatin to dihydrozeatin in phaseolus embryos. Plant Physiol. 1989 Aug;90(4):1630–1635. doi: 10.1104/pp.90.4.1630. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Medford J. I., Horgan R., El-Sawi Z., Klee H. J. Alterations of Endogenous Cytokinins in Transgenic Plants Using a Chimeric Isopentenyl Transferase Gene. Plant Cell. 1989 Apr;1(4):403–413. doi: 10.1105/tpc.1.4.403. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miura G., Hall R. H. trans-Ribosylzeatin: Its Biosynthesis in Zea mays Endosperm and the Mycorrhizal Fungus, Rhizopogon roseolus. Plant Physiol. 1973 Mar;51(3):563–569. doi: 10.1104/pp.51.3.563. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prinsen E., Redig P., Strnad M., Galís I., Van Dongen W., Van Onckelen H. Quantifying phytohormones in transformed plants. Methods Mol Biol. 1995;44:245–262. doi: 10.1385/0-89603-302-3:245. [DOI] [PubMed] [Google Scholar]
- Sembdner G., Atzorn R., Schneider G. Plant hormone conjugation. Plant Mol Biol. 1994 Dec;26(5):1459–1481. doi: 10.1007/BF00016485. [DOI] [PubMed] [Google Scholar]
- Smigocki A. C. Cytokinin content and tissue distribution in plants transformed by a reconstructed isopentenyl transferase gene. Plant Mol Biol. 1991 Jan;16(1):105–115. doi: 10.1007/BF00017921. [DOI] [PubMed] [Google Scholar]
- Terrine C., Laloue M. Kinetics of N-(Delta-Isopentenyl)Adenosine Degradation in Tobacco Cells: EVIDENCE OF A REGULATORY MECHANISM UNDER THE CONTROL OF CYTOKININS. Plant Physiol. 1980 Jun;65(6):1090–1095. doi: 10.1104/pp.65.6.1090. [DOI] [PMC free article] [PubMed] [Google Scholar]