Abstract
In C3 plants, serine synthesis is associated with photorespiratory glycine metabolism involving the tetrahydrofolate (THF)-dependent activities of the glycine decarboxylase complex (GDC) and serine hydroxymethyl transferase (SHMT). Alternatively, THF-dependent serine synthesis can occur via the C1-THF synthase/SHMT pathway. We used 13C nuclear magnetic resonance to examine serine biosynthesis by these two pathways in Arabidopsis thaliana (L.) Heynh. Columbia wild type. We confirmed the tight coupling of the GDC/ SHMT system and observed directly in a higher plant the flux of formate through the C1-THF synthase/SHMT system. The accumulation of 13C-enriched serine over 24 h from the GDC/SHMT activities was 4-fold greater than that from C1-THF synthase/SHMT activities. Our experiments strongly suggest that the two pathways operate independently in Arabidopsis. Plants exposed to methotrexate and sulfanilamide, powerful inhibitors of THF biosynthesis, reduced serine synthesis by both pathways. The results suggest that continuous supply of THF is essential to maintain high rates of serine metabolism. Nuclear magnetic resonance is a powerful tool for the examination of THF-mediated metabolism in its natural cellular environment.
Full Text
The Full Text of this article is available as a PDF (957.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Appling D. R. Compartmentation of folate-mediated one-carbon metabolism in eukaryotes. FASEB J. 1991 Sep;5(12):2645–2651. doi: 10.1096/fasebj.5.12.1916088. [DOI] [PubMed] [Google Scholar]
- Besson V., Rebeille F., Neuburger M., Douce R., Cossins E. A. Effects of tetrahydrofolate polyglutamates on the kinetic parameters of serine hydroxymethyltransferase and glycine decarboxylase from pea leaf mitochondria. Biochem J. 1993 Jun 1;292(Pt 2):425–430. doi: 10.1042/bj2920425. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Colas des Francs-Small C., Ambard-Bretteville F., Small I. D., Rémy R. Identification of a major soluble protein in mitochondria from nonphotosynthetic tissues as NAD-dependent formate dehydrogenase. Plant Physiol. 1993 Aug;102(4):1171–1177. doi: 10.1104/pp.102.4.1171. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dickinson J. R., Dawes I. W., Boyd A. S., Baxter R. L. 13C NMR studies of acetate metabolism during sporulation of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1983 Oct;80(19):5847–5851. doi: 10.1073/pnas.80.19.5847. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gout E., Bligny R., Pascal N., Douce R. 13C nuclear magnetic resonance studies of malate and citrate synthesis and compartmentation in higher plant cells. J Biol Chem. 1993 Feb 25;268(6):3986–3992. [PubMed] [Google Scholar]
- Nour J. M., Rabinowitz J. C. Isolation and sequencing of the cDNA coding for spinach 10-formyltetrahydrofolate synthetase. Comparisons with the yeast, mammalian, and bacterial proteins. J Biol Chem. 1992 Aug 15;267(23):16292–16296. [PubMed] [Google Scholar]
- Nour J. M., Rabinowitz J. C. Isolation, characterization, and structural organization of 10-formyltetrahydrofolate synthetase from spinach leaves. J Biol Chem. 1991 Sep 25;266(27):18363–18369. [PubMed] [Google Scholar]
- Oliver D. J. Formate oxidation and oxygen reduction by leaf mitochondria. Plant Physiol. 1981 Sep;68(3):703–705. doi: 10.1104/pp.68.3.703. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pasternack L. B., Laude D. A., Jr, Appling D. R. 13C NMR detection of folate-mediated serine and glycine synthesis in vivo in Saccharomyces cerevisiae. Biochemistry. 1992 Sep 22;31(37):8713–8719. doi: 10.1021/bi00152a005. [DOI] [PubMed] [Google Scholar]
- Pasternack L. B., Laude D. A., Jr, Appling D. R. Whole-cell detection by 13C NMR of metabolic flux through the C1-tetrahydrofolate synthase/serine hydroxymethyltransferase enzyme system and effect of antifolate exposure in Saccharomyces cerevisiae. Biochemistry. 1994 Jun 14;33(23):7166–7173. doi: 10.1021/bi00189a020. [DOI] [PubMed] [Google Scholar]
- Rebeille F., Neuburger M., Douce R. Interaction between glycine decarboxylase, serine hydroxymethyltransferase and tetrahydrofolate polyglutamates in pea leaf mitochondria. Biochem J. 1994 Aug 15;302(Pt 1):223–228. doi: 10.1042/bj3020223. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shingles R., Woodrow L., Grodzinski B. Effects of Glycolate Pathway Intermediates on Glycine Decarboxylation and Serine Synthesis in Pea (Pisum sativum L.). Plant Physiol. 1984 Mar;74(3):705–710. doi: 10.1104/pp.74.3.705. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Somerville C. R., Ogren W. L. Photorespiration-deficient Mutants of Arabidopsis thaliana Lacking Mitochondrial Serine Transhydroxymethylase Activity. Plant Physiol. 1981 Apr;67(4):666–671. doi: 10.1104/pp.67.4.666. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sumegi B., McCammon M. T., Sherry A. D., Keys D. A., McAlister-Henn L., Srere P. A. Metabolism of [3-13C]pyruvate in TCA cycle mutants of yeast. Biochemistry. 1992 Sep 22;31(37):8720–8725. doi: 10.1021/bi00152a006. [DOI] [PubMed] [Google Scholar]
- Turner S. R., Ireland R., Morgan C., Rawsthorne S. Identification and localization of multiple forms of serine hydroxymethyltransferase in pea (Pisum sativum) and characterization of a cDNA encoding a mitochondrial isoform. J Biol Chem. 1992 Jul 5;267(19):13528–13534. [PubMed] [Google Scholar]
- Wu K., Atkinson I. J., Cossins E. A., King J. Methotrexate Resistance in Datura innoxia (Uptake and Metabolism of Methotrexate in Wild-Type and Resistant Cell Lines). Plant Physiol. 1993 Feb;101(2):477–483. doi: 10.1104/pp.101.2.477. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu K., Cossins E. A., King J. Folate Metabolism in Datura innoxia (In Vivo and in Vitro Folylpolyglutamate Synthesis in Wild-Type and Methotrexate-Resistant Cells). Plant Physiol. 1994 Feb;104(2):373–380. doi: 10.1104/pp.104.2.373. [DOI] [PMC free article] [PubMed] [Google Scholar]