Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1996 Sep;112(1):217–227. doi: 10.1104/pp.112.1.217

Aluminum Tolerance Acquired during Phosphate Starvation in Cultured Tobacco Cells.

Y Yamamoto 1, K Masamoto 1, S Rikiishi 1, A Hachiya 1, Y Yamaguchi 1, H Matsumoto 1
PMCID: PMC157940  PMID: 12226385

Abstract

Al toxicity in cultured tobacco cells (Nicotiana tabacum L. cv Samsun; nonchlorophyllic cell line SL) has been investigated in nutrient medium. In this system, Al and Fe(II) (ferrous ion) in the medium synergistically result in the accumulation of both Al and Fe, the peroxidation of lipids, and eventually death in cells at the logarithmic phase of growth (+P cells). A lipophilic antioxidant, N,N[prime]-diphenyl-p-phenylenediamine, protected +P cells from the peroxidation of lipids and from cell death, suggesting that a relationship exists between the two. Compared with +P cells, cells that had been starved of Pi (-P cells) were more tolerant to Al, accumulated 30 to 40% less Al and 70 to 90% less Fe, and did not show any evidence of the peroxidation of lipids during Al treatment. These results suggest that -P cells exhibit Al tolerance because their plasma membranes are protected from the peroxidation of lipids caused by the combination of Al and Fe(II). It seems likely that the exclusion of Fe from -P cells might suppress directly Fe-mediated peroxidation of lipids. Furthermore, since -P cells accumulated [beta]-carotene, it is proposed that this carotenoid pigment might function as a radical-trapping antioxidant in the plasma membrane of cells starved of Pi.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Burton G. W., Ingold K. U. beta-Carotene: an unusual type of lipid antioxidant. Science. 1984 May 11;224(4649):569–573. doi: 10.1126/science.6710156. [DOI] [PubMed] [Google Scholar]
  2. Chen Q., Jones T. W., Brown P. C., Stevens J. L. The mechanism of cysteine conjugate cytotoxicity in renal epithelial cells. Covalent binding leads to thiol depletion and lipid peroxidation. J Biol Chem. 1990 Dec 15;265(35):21603–21611. [PubMed] [Google Scholar]
  3. Delhaize E., Ryan P. R. Aluminum Toxicity and Tolerance in Plants. Plant Physiol. 1995 Feb;107(2):315–321. doi: 10.1104/pp.107.2.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Delhaize E., Ryan P. R., Randall P. J. Aluminum Tolerance in Wheat (Triticum aestivum L.) (II. Aluminum-Stimulated Excretion of Malic Acid from Root Apices). Plant Physiol. 1993 Nov;103(3):695–702. doi: 10.1104/pp.103.3.695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Grabski S., Schindler M. Aluminum Induces Rigor within the Actin Network of Soybean Cells. Plant Physiol. 1995 Jul;108(3):897–901. doi: 10.1104/pp.108.3.897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gutteridge J. M., Quinlan G. J., Clark I., Halliwell B. Aluminium salts accelerate peroxidation of membrane lipids stimulated by iron salts. Biochim Biophys Acta. 1985 Jul 31;835(3):441–447. doi: 10.1016/0005-2760(85)90113-4. [DOI] [PubMed] [Google Scholar]
  7. Jones D. L., Kochian L. V. Aluminum Inhibition of the Inositol 1,4,5-Trisphosphate Signal Transduction Pathway in Wheat Roots: A Role in Aluminum Toxicity? Plant Cell. 1995 Nov;7(11):1913–1922. doi: 10.1105/tpc.7.11.1913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Krinsky N. I. Antioxidant functions of carotenoids. Free Radic Biol Med. 1989;7(6):617–635. doi: 10.1016/0891-5849(89)90143-3. [DOI] [PubMed] [Google Scholar]
  9. Krinsky N. I., Deneke S. M. Interaction of oxygen and oxy-radicals with carotenoids. J Natl Cancer Inst. 1982 Jul;69(1):205–210. [PubMed] [Google Scholar]
  10. Levine A., Tenhaken R., Dixon R., Lamb C. H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell. 1994 Nov 18;79(4):583–593. doi: 10.1016/0092-8674(94)90544-4. [DOI] [PubMed] [Google Scholar]
  11. Lipton D. S., Blanchar R. W., Blevins D. G. Citrate, Malate, and Succinate Concentration in Exudates from P-Sufficient and P-Stressed Medicago sativa L. Seedlings. Plant Physiol. 1987 Oct;85(2):315–317. doi: 10.1104/pp.85.2.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Nakamura C., Van Telgen H. J., Mennes A. M., Ono H., Libbenga K. R. Correlation between Auxin Resistance and the Lack of a Membrane-Bound Auxin Binding Protein and a Root-Specific Peroxidase in Nicotiana tabacum. Plant Physiol. 1988 Nov;88(3):845–849. doi: 10.1104/pp.88.3.845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Niki E. Antioxidants in relation to lipid peroxidation. Chem Phys Lipids. 1987 Jul-Sep;44(2-4):227–253. doi: 10.1016/0009-3084(87)90052-1. [DOI] [PubMed] [Google Scholar]
  14. Odagaki Y., Koyama T., Yamashita I. Platelet pertussis toxin-sensitive G proteins in affective disorders. J Affect Disord. 1994 Jul;31(3):173–177. doi: 10.1016/0165-0327(94)90026-4. [DOI] [PubMed] [Google Scholar]
  15. Prohaska J. R. The glutathione peroxidase activity of glutathione S-transferases. Biochim Biophys Acta. 1980 Jan 11;611(1):87–98. doi: 10.1016/0005-2744(80)90045-5. [DOI] [PubMed] [Google Scholar]
  16. Rincón M., Gonzales R. A. Aluminum Partitioning in Intact Roots of Aluminum-Tolerant and Aluminum-Sensitive Wheat (Triticum aestivum L.) Cultivars. Plant Physiol. 1992 Jul;99(3):1021–1028. doi: 10.1104/pp.99.3.1021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sharma Y. K., Davis K. R. Ozone-Induced Expression of Stress-Related Genes in Arabidopsis thaliana. Plant Physiol. 1994 Aug;105(4):1089–1096. doi: 10.1104/pp.105.4.1089. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES