Abstract
The soluble NAD(P)H:(quinone-acceptor) oxidoreductase [NAD(P)H-QR, EC 1.6.99.2] of Nicotiana tabacum L. leaves and roots has been purified. NAD(P)H-QR contains noncovalently bound flavin mononucleotide. Pairs of subunits of 21.4 kD are linked together by disulfide bridges, but the active enzyme is a homotetramer of 94 to 100 kD showing an isoelectric point of 5.1. NAD(P)H-QR is a B-stereospecific dehydrogenase. NADH and NADPH are electron donors of similar efficiency with Kcat:Km ratios (with duroquinone) of 6.2 x 107 and 8.0 x 107 m-1 s-1, respectively. Hydrophilic quinones are good electron acceptors, although ferricyanide and dichlorophenolindophenol are also reduced. The quinones are converted to hydroquinones by an obligatory two-electron transfer. No spectral evidence for a flavin semiquinone was detected following anaerobic photoreduction. Cibacron blue and 7-iodo-acridone-4-carboxylic acid are inhibitory. Tobacco NAD(P)H-QR resembles animal DT-diaphorase in some respects (identical reaction mechanism with a two-electron transfer to quinones, unusually high catalytic capability, and donor and acceptor substrate specificity), but it differs from DT-diaphorase in molecular structure, flavin cofactor, stereospecificity, and sensitivity to inhibitors. As in the case with DT-diaphorase in animals, the main NAD(P)H-QR function in plant cells may be the reduction of quinones to quinols, which prevents the production of semiquinones and oxygen radicals. The enzyme appears to belong to a widespread group of plant and fungal flavoproteins found in different cell compartments that are able to reduce quinones.
Full Text
The Full Text of this article is available as a PDF (1.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arnold L. J., Jr, You K., Allison W. S., Kaplan N. O. Determination of the hydride transfer stereospecificity of nicotinamide adenine dinucleotide linked oxidoreductases by proton magnetic resonance. Biochemistry. 1976 Nov 2;15(22):4844–4849. doi: 10.1021/bi00667a014. [DOI] [PubMed] [Google Scholar]
- Brock B. J., Rieble S., Gold M. H. Purification and Characterization of a 1,4-Benzoquinone Reductase from the Basidiomycete Phanerochaete chrysosporium. Appl Environ Microbiol. 1995 Aug;61(8):3076–3081. doi: 10.1128/aem.61.8.3076-3081.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chauveau M., Lance C. Purification and Partial Characterization of Two Soluble NAD(P)H Dehydrogenases from Arum maculatum Mitochondria. Plant Physiol. 1991 Mar;95(3):934–942. doi: 10.1104/pp.95.3.934. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Douce R., Mannella C. A., Bonner W. D., Jr The external NADH dehydrogenases of intact plant mitochondria. Biochim Biophys Acta. 1973 Jan 18;292(1):105–116. doi: 10.1016/0005-2728(73)90255-7. [DOI] [PubMed] [Google Scholar]
- Guerrini F., Valenti V., Pupillo P. Solubilization and Purification of NAD(P)H Dehydrogenase of Cucurbita Microsomes. Plant Physiol. 1987 Nov;85(3):828–834. doi: 10.1104/pp.85.3.828. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hassan H. M., Fridovich I. Intracellular production of superoxide radical and of hydrogen peroxide by redox active compounds. Arch Biochem Biophys. 1979 Sep;196(2):385–395. doi: 10.1016/0003-9861(79)90289-3. [DOI] [PubMed] [Google Scholar]
- Heineke D., Riens B., Grosse H., Hoferichter P., Peter U., Flügge U. I., Heldt H. W. Redox Transfer across the Inner Chloroplast Envelope Membrane. Plant Physiol. 1991 Apr;95(4):1131–1137. doi: 10.1104/pp.95.4.1131. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee C. P., Simard-Duquesne N., Ernster L., Hoberman H. D. Stereochemistry of hydrogen-transfer in the energy-linked pyridine nucleotide transhydrogenase and related reactions. Biochim Biophys Acta. 1965 Sep 20;105(3):397–409. doi: 10.1016/s0926-6593(65)80226-0. [DOI] [PubMed] [Google Scholar]
- Light D. R., Walsh C., Marletta M. A. Analytical and preparative high-performance liquid chromatography separation of flavin and flavin analog coenzymes. Anal Biochem. 1980 Nov 15;109(1):87–93. doi: 10.1016/0003-2697(80)90014-7. [DOI] [PubMed] [Google Scholar]
- Luethy M. H., Hayes M. K., Elthon T. E. Partial Purification and Characterization of Three NAD(P)H Dehydrogenases from Beta vulgaris Mitochondria. Plant Physiol. 1991 Dec;97(4):1317–1322. doi: 10.1104/pp.97.4.1317. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Luethy M. H., Thelen J. J., Knudten A. F., Elthon T. E. Purification, Characterization, and Submitochondrial Localization of a 58-Kilodalton NAD(P)H Dehydrogenase. Plant Physiol. 1995 Feb;107(2):443–450. doi: 10.1104/pp.107.2.443. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Luster D. G., Buckhout T. J. Purification and Identification of a Plasma Membrane Associated Electron Transport Protein from Maize (Zea mays L.) Roots. Plant Physiol. 1989 Nov;91(3):1014–1019. doi: 10.1104/pp.91.3.1014. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Massey V., Hemmerich P. Photoreduction of flavoproteins and other biological compounds catalyzed by deazaflavins. Biochemistry. 1978 Jan 10;17(1):9–16. doi: 10.1021/bi00594a002. [DOI] [PubMed] [Google Scholar]
- Massey V., Müller F., Feldberg R., Schuman M., Sullivan P. A., Howell L. G., Mayhew S. G., Matthews R. G., Foust G. P. The reactivity of flavoproteins with sulfite. Possible relevance to the problem of oxygen reactivity. J Biol Chem. 1969 Aug 10;244(15):3999–4006. [PubMed] [Google Scholar]
- Michels S., Scagliarini S., Della Seta F., Carles C., Riva M., Trost P., Branlant G. Arguments against a close relationship between non-phosphorylating and phosphorylating glyceraldehyde-3-phosphate dehydrogenases. FEBS Lett. 1994 Feb 14;339(1-2):97–100. doi: 10.1016/0014-5793(94)80393-5. [DOI] [PubMed] [Google Scholar]
- Møller I. M., Rasmusson A. G., Fredlund K. M. NAD(P)H-ubiquinone oxidoreductases in plant mitochondria. J Bioenerg Biomembr. 1993 Aug;25(4):377–384. doi: 10.1007/BF00762463. [DOI] [PubMed] [Google Scholar]
- Oettmeier W., Masson K., Soll M. The acridones, new inhibitors of mitochondrial NADH: ubiquinone oxidoreductase (complex I). Biochim Biophys Acta. 1992 Mar 13;1099(3):262–266. doi: 10.1016/0005-2728(92)90036-2. [DOI] [PubMed] [Google Scholar]
- Prochaska H. J., De Long M. J., Talalay P. On the mechanisms of induction of cancer-protective enzymes: a unifying proposal. Proc Natl Acad Sci U S A. 1985 Dec;82(23):8232–8236. doi: 10.1073/pnas.82.23.8232. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pupillo P., Valenti V., De Luca L., Hertel R. Kinetic characterization of reduced pyridine nucleotide dehydrogenases (duroquinone-dependent) in cucurbita microsomes. Plant Physiol. 1986 Feb;80(2):384–389. doi: 10.1104/pp.80.2.384. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rescigno A., Sollai F., Masala S., Porcu M. C., Sanjust E., Rinaldi A. C., Curreli N., Grifi D., Rinaldi A. Purification and characterization of an NAD(P)H:quinone oxidoreductase from Glycine max seedlings. Prep Biochem. 1995 Feb-May;25(1-2):57–67. doi: 10.1080/10826069508010107. [DOI] [PubMed] [Google Scholar]
- Serrano A., Cordoba F., Gonzalez-Reyes J. A., Navas P., Villalba J. M. Purification and Characterization of Two Distinct NAD(P)H Dehydrogenases from Onion (Allium cepa L.) Root Plasma Membrane. Plant Physiol. 1994 Sep;106(1):87–96. doi: 10.1104/pp.106.1.87. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Siegel L. M. Quantitative determination of noncovalently bound flavins: types and methods of analysis. Methods Enzymol. 1978;53:419–429. doi: 10.1016/s0076-6879(78)53046-2. [DOI] [PubMed] [Google Scholar]
- Trost P., Bonora P., Scagliarini S., Pupillo P. Purification and properties of NAD(P)H: (quinone-acceptor) oxidoreductase of sugarbeet cells. Eur J Biochem. 1995 Dec 1;234(2):452–458. doi: 10.1111/j.1432-1033.1995.452_b.x. [DOI] [PubMed] [Google Scholar]