Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1996 Sep;112(1):371–378. doi: 10.1104/pp.112.1.371

Biotin synthase from Arabidopsis thaliana. cDNA isolation and characterization of gene expression.

D A Patton 1, M Johnson 1, E R Ward 1
PMCID: PMC157958  PMID: 8819333

Abstract

The full-length BIO2 cDNA from Arabidopsis thaliana was isolated using an expressed sequence tag that was homologous to the Escherichia coli biotin synthase gene (BioB). Comparisons of the deduced amino acid sequence from BIO2 with bacterial and yeast biotin synthase homologs revealed a high degree of sequence similarity. The amino terminus of the predicted BIO2 protein contains a stretch of hydrophobic residues similar in composition to transit peptide sequences. BIO2 is a single-copy nuclear gene in Arabidopsis that is expressed at high levels in the tissues of immature plants. Expression of BIO2 was higher in the light relative to dark and was induced 5-fold during biotin-limited conditions. These results demonstrate that expression of at least one gene in this pathway is regulated in response to developmental, environmental, and bio-chemical stimuli.

Full Text

The Full Text of this article is available as a PDF (2.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baldet P., Gerbling H., Axiotis S., Douce R. Biotin biosynthesis in higher plant cells. Identification of intermediates. Eur J Biochem. 1993 Oct 1;217(1):479–485. doi: 10.1111/j.1432-1033.1993.tb18267.x. [DOI] [PubMed] [Google Scholar]
  2. Birch O. M., Fuhrmann M., Shaw N. M. Biotin synthase from Escherichia coli, an investigation of the low molecular weight and protein components required for activity in vitro. J Biol Chem. 1995 Aug 11;270(32):19158–19165. doi: 10.1074/jbc.270.32.19158. [DOI] [PubMed] [Google Scholar]
  3. Choi J. K., Yu F., Wurtele E. S., Nikolau B. J. Molecular cloning and characterization of the cDNA coding for the biotin-containing subunit of the chloroplastic acetyl-coenzyme A carboxylase. Plant Physiol. 1995 Oct;109(2):619–625. doi: 10.1104/pp.109.2.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Del Campillo-Campbell A., Kayajanian G., Campbell A., Adhya S. Biotin-requiring mutants of Escherichia coli K-12. J Bacteriol. 1967 Dec;94(6):2065–2066. doi: 10.1128/jb.94.6.2065-2066.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Duval M., Job C., Alban C., Douce R., Job D. Developmental patterns of free and protein-bound biotin during maturation and germination of seeds of Pisum sativum: characterization of a novel seed-specific biotinylated protein. Biochem J. 1994 Apr 1;299(Pt 1):141–150. doi: 10.1042/bj2990141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Eisenberg M. A. Biotin: biogenesis, transport, and their regulation. Adv Enzymol Relat Areas Mol Biol. 1973;38:317–372. doi: 10.1002/9780470122839.ch7. [DOI] [PubMed] [Google Scholar]
  7. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  8. Guerrero F. D., Crossland L., Smutzer G. S., Hamilton D. A., Mascarenhas J. P. Promoter sequences from a maize pollen-specific gene direct tissue-specific transcription in tobacco. Mol Gen Genet. 1990 Nov;224(2):161–168. doi: 10.1007/BF00271548. [DOI] [PubMed] [Google Scholar]
  9. Guyer D., Patton D., Ward E. Evidence for cross-pathway regulation of metabolic gene expression in plants. Proc Natl Acad Sci U S A. 1995 May 23;92(11):4997–5000. doi: 10.1073/pnas.92.11.4997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ifuku O., Koga N., Haze S., Kishimoto J., Wachi Y. Flavodoxin is required for conversion of dethiobiotin to biotin in Escherichia coli. Eur J Biochem. 1994 Aug 15;224(1):173–178. doi: 10.1111/j.1432-1033.1994.tb20009.x. [DOI] [PubMed] [Google Scholar]
  11. Knowles J. R. The mechanism of biotin-dependent enzymes. Annu Rev Biochem. 1989;58:195–221. doi: 10.1146/annurev.bi.58.070189.001211. [DOI] [PubMed] [Google Scholar]
  12. Lagrimini L. M., Burkhart W., Moyer M., Rothstein S. Molecular cloning of complementary DNA encoding the lignin-forming peroxidase from tobacco: Molecular analysis and tissue-specific expression. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7542–7546. doi: 10.1073/pnas.84.21.7542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. León-Del-Rio A., Leclerc D., Akerman B., Wakamatsu N., Gravel R. A. Isolation of a cDNA encoding human holocarboxylase synthetase by functional complementation of a biotin auxotroph of Escherichia coli. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4626–4630. doi: 10.1073/pnas.92.10.4626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Patton D. A., Franzmann L. H., Meinke D. W. Mapping genes essential for embryo development in Arabidopsis thaliana. Mol Gen Genet. 1991 Jul;227(3):337–347. doi: 10.1007/BF00273921. [DOI] [PubMed] [Google Scholar]
  15. Patton D. A., Volrath S., Ward E. R. Complementation of an Arabidopsis thaliana biotin auxotroph with an Escherichia coli biotin biosynthetic gene. Mol Gen Genet. 1996 Jun 12;251(3):261–266. doi: 10.1007/BF02172516. [DOI] [PubMed] [Google Scholar]
  16. Rolfe B., Eisenberg M. A. Genetic and biochemical analysis of the biotin loci of Escherichia coli K-12. J Bacteriol. 1968 Aug;96(2):515–524. doi: 10.1128/jb.96.2.515-524.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sanyal I., Cohen G., Flint D. H. Biotin synthase: purification, characterization as a [2Fe-2S]cluster protein, and in vitro activity of the Escherichia coli bioB gene product. Biochemistry. 1994 Mar 29;33(12):3625–3631. doi: 10.1021/bi00178a020. [DOI] [PubMed] [Google Scholar]
  18. Schneider T., Dinkins R., Robinson K., Shellhammer J., Meinke D. W. An embryo-lethal mutant of Arabidopsis thaliana is a biotin auxotroph. Dev Biol. 1989 Jan;131(1):161–167. doi: 10.1016/s0012-1606(89)80047-8. [DOI] [PubMed] [Google Scholar]
  19. Shellhammer J., Meinke D. Arrested Embryos from the bio1 Auxotroph of Arabidopsis thaliana Contain Reduced Levels of Biotin. Plant Physiol. 1990 Jul;93(3):1162–1167. doi: 10.1104/pp.93.3.1162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Weaver L. M., Yu F., Wurtele E. S., Nikolau B. J. Characterization of the cDNA and gene coding for the biotin synthase of Arabidopsis thaliana. Plant Physiol. 1996 Mar;110(3):1021–1028. doi: 10.1104/pp.110.3.1021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Wolf B., Heard G. S., McVoy J. R., Grier R. E. Biotinidase deficiency. Ann N Y Acad Sci. 1985;447:252–262. doi: 10.1111/j.1749-6632.1985.tb18443.x. [DOI] [PubMed] [Google Scholar]
  22. de Pater S., Pham K., Chua N. H., Memelink J., Kijne J. A 22-bp fragment of the pea lectin promoter containing essential TGAC-like motifs confers seed-specific gene expression. Plant Cell. 1993 Aug;5(8):877–886. doi: 10.1105/tpc.5.8.877. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES