Abstract
In the C4 dicotyledonous grain plant amaranth (Amaranthus hypochondriacus), a mitochondrial NAD-dependent malic enzyme (NAD-ME; EC 1.1.1.39) serves a specialized and essential role in photosynthetic carbon fixation. In this study we have examined specialized photosynthetic gene expression patterns for the NAD-ME [alpha] subunit. We show here that the [alpha] subunit gene is preferentially expressed in leaves and cotyledons (the most photosynthetically active tissues), and this expression is specific to the bundle-sheath cells of these tissues from the earliest stages of development. Synthesis of the [alpha] subunit polypeptide and accumulation of its corresponding mRNA are strongly light-dependent, but this regulation is also influenced by seedling development. In addition, light-dependent accumulation of the [alpha] subunit mRNA is regulated at transcriptional as well as posttranscriptional levels. Our findings demonstrate that the NAD-ME of amaranth has acquired numerous complex tissue-specific and light-mediated regulation patterns that define its specialized function as a key enzyme in the C4 photosynthetic pathway.
Full Text
The Full Text of this article is available as a PDF (2.6 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Berry J. O., Breiding D. E., Klessig D. F. Light-mediated control of translational initiation of ribulose-1, 5-bisphosphate carboxylase in amaranth cotyledons. Plant Cell. 1990 Aug;2(8):795–803. doi: 10.1105/tpc.2.8.795. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berry J. O., Nikolau B. J., Carr J. P., Klessig D. F. Transcriptional and post-transcriptional regulation of ribulose 1,5-bisphosphate carboxylase gene expression in light- and dark-grown amaranth cotyledons. Mol Cell Biol. 1985 Sep;5(9):2238–2246. doi: 10.1128/mcb.5.9.2238. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berry J. O., Nikolau B. J., Carr J. P., Klessig D. F. Translational regulation of light-induced ribulose 1,5-bisphosphate carboxylase gene expression in amaranth. Mol Cell Biol. 1986 Jul;6(7):2347–2353. doi: 10.1128/mcb.6.7.2347. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Collins P. D., Hague D. R. Light-stimulated synthesis of NADP malic enzyme in leaves of maize. J Biol Chem. 1983 Mar 25;258(6):4012–4018. [PubMed] [Google Scholar]
- Fluhr R., Kuhlemeier C., Nagy F., Chua N. H. Organ-specific and light-induced expression of plant genes. Science. 1986 May 30;232(4754):1106–1112. doi: 10.1126/science.232.4754.1106. [DOI] [PubMed] [Google Scholar]
- Furbank R. T., Taylor W. C. Regulation of Photosynthesis in C3 and C4 Plants: A Molecular Approach. Plant Cell. 1995 Jul;7(7):797–807. doi: 10.1105/tpc.7.7.797. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hatch M. D., Mau S. L., Kagawa T. Properties of leaf NAD malic enzyme from plants with C4 pathway photosynthesis. Arch Biochem Biophys. 1974 Nov;165(1):188–200. doi: 10.1016/0003-9861(74)90155-6. [DOI] [PubMed] [Google Scholar]
- Langdale J. A., Metzler M. C., Nelson T. The argentia mutation delays normal development of photosynthetic cell-types in Zea mays. Dev Biol. 1987 Jul;122(1):243–255. doi: 10.1016/0012-1606(87)90349-6. [DOI] [PubMed] [Google Scholar]
- Long J. J., Wang J. L., Berry J. O. Cloning and analysis of the C4 photosynthetic NAD-dependent malic enzyme of amaranth mitochondria. J Biol Chem. 1994 Jan 28;269(4):2827–2833. [PubMed] [Google Scholar]
- Ramsperger V. C., Summers R. G., Berry J. O. Photosynthetic Gene Expression in Meristems and during Initial Leaf Development in a C4 Dicotyledonous Plant. Plant Physiol. 1996 Aug;111(4):999–1010. doi: 10.1104/pp.111.4.999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schäffner A. R., Sheen J. Maize rbcS promoter activity depends on sequence elements not found in dicot rbcS promoters. Plant Cell. 1991 Sep;3(9):997–1012. doi: 10.1105/tpc.3.9.997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sheen J. Metabolic repression of transcription in higher plants. Plant Cell. 1990 Oct;2(10):1027–1038. doi: 10.1105/tpc.2.10.1027. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sheen J. Molecular mechanisms underlying the differential expression of maize pyruvate, orthophosphate dikinase genes. Plant Cell. 1991 Mar;3(3):225–245. doi: 10.1105/tpc.3.3.225. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shirley B. W., Ham D. P., Senecoff J. F., Berry-Lowe S. L., Zurfluh L. L., Shah D. M., Meagher R. B. Comparison of the expression of two highly homologous members of the soybean ribulose-1,5-bisphosphate carboxylase small subunit gene family. Plant Mol Biol. 1990 Jun;14(6):909–925. doi: 10.1007/BF00019389. [DOI] [PubMed] [Google Scholar]
- Silverthorne J., Tobin E. M. Post-transcriptional regulation of organ-specific expression of individual rbcS mRNAs in Lemna gibba. Plant Cell. 1990 Dec;2(12):1181–1190. doi: 10.1105/tpc.2.12.1181. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sonnewald U., Willmitzer L. Molecular approaches to sink-source interactions. Plant Physiol. 1992 Aug;99(4):1267–1270. doi: 10.1104/pp.99.4.1267. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang J. L., Klessig D. F., Berry J. O. Regulation of C4 Gene Expression in Developing Amaranth Leaves. Plant Cell. 1992 Feb;4(2):173–184. doi: 10.1105/tpc.4.2.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang J. L., Turgeon R., Carr J. P., Berry J. O. Carbon Sink-to-Source Transition Is Coordinated with Establishment of Cell-Specific Gene Expression in a C4 Plant. Plant Cell. 1993 Mar;5(3):289–296. doi: 10.1105/tpc.5.3.289. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wanner L. A., Gruissem W. Expression dynamics of the tomato rbcS gene family during development. Plant Cell. 1991 Dec;3(12):1289–1303. doi: 10.1105/tpc.3.12.1289. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wedding R. T. Malic enzymes of higher plants: characteristics, regulation, and physiological function. Plant Physiol. 1989 Jun;90(2):367–371. doi: 10.1104/pp.90.2.367. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Winning B. M., Bourguignon J., Leaver C. J. Plant mitochondrial NAD+-dependent malic enzyme. cDNA cloning, deduced primary structure of the 59- and 62-kDa subunits, import, gene complexity and expression analysis. J Biol Chem. 1994 Feb 18;269(7):4780–4786. [PubMed] [Google Scholar]
- ap Rees T., Bryce J. H., Wilson P. M., Green J. H. Role and location of NAD malic enzyme in thermogenic tissues of Araceae. Arch Biochem Biophys. 1983 Dec;227(2):511–521. doi: 10.1016/0003-9861(83)90480-0. [DOI] [PubMed] [Google Scholar]