Abstract
The Nicotiana tabacum Itp1 gene (Ntltp1) encodes a small basic protein that belongs to a class of putative lipid transfer proteins. These proteins transfer lipids between membranes in vitro, but their in vivo function remains hotly debated. This gene also serves as an important early marker for epidermis differentiation. We report here the analysis of the spatial and developmental activity of the Ntltp1 promoter, and we define a sequence element required for epidermis-specific expression. Transgenic plants were created containing 1346 bp of the Ntltp1 promoter fused upstream of the beta-glucuronidase (GUS) gene. In the mature aerial tissues, GUS activity was detected predominantly in the epidermis, whereas in younger aerial tissues, such as the shoot apical meristem and floral meristem, GUS expression was not restricted to the tunica layer. Unexpectedly, GUS activity was also detected in young roots particularly in the root epidermis. Furthermore, the Ntltp1 promoter displayed a tissue and developmental specific pattern of activity during germination. These results suggest that the Ntltp1 gene is highly expressed in regions of the plant that are vulnerable to pathogen attack and are thus consistent with the proposed function of lipid transfer proteins in plant defense. Deletions of the promoter from its 5' end revealed that the 148 bp preceding the translational start site are sufficient for epidermis-specific expression. Sequence comparison identified an eight-nucleotide palindromic sequence CTAGCTAG in the leader of Ntltp1, which is conserved in a number of other Itp genes. By gel retardation analysis, the presence of specific DNA-protein complexes in this region was demonstrated. The characterization of these factors may lead to the identification of factors that control early events in epidermis differentiation.
Full Text
The Full Text of this article is available as a PDF (3.5 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- A simple and general method for transferring genes into plants. Science. 1985 Mar 8;227(4691):1229–1231. doi: 10.1126/science.227.4691.1229. [DOI] [PubMed] [Google Scholar]
- Bernhard W. R., Thoma S., Botella J., Somerville C. R. Isolation of a cDNA Clone for Spinach Lipid Transfer Protein and Evidence that the Protein Is Synthesized by the Secretory Pathway. Plant Physiol. 1991 Jan;95(1):164–170. doi: 10.1104/pp.95.1.164. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Buratowski S. The basics of basal transcription by RNA polymerase II. Cell. 1994 Apr 8;77(1):1–3. doi: 10.1016/0092-8674(94)90226-7. [DOI] [PubMed] [Google Scholar]
- Clark A. M., Bohnert H. J. Epidermis-specific transcripts. Nucleotide sequence of a full-length cDNA of EPI12, encoding a putative lipid transfer protein. Plant Physiol. 1993 Oct;103(2):677–678. doi: 10.1104/pp.103.2.677. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Conaway R. C., Conaway J. W. General initiation factors for RNA polymerase II. Annu Rev Biochem. 1993;62:161–190. doi: 10.1146/annurev.bi.62.070193.001113. [DOI] [PubMed] [Google Scholar]
- Deutch C. E., Winicov I. Post-transcriptional regulation of a salt-inducible alfalfa gene encoding a putative chimeric proline-rich cell wall protein. Plant Mol Biol. 1995 Jan;27(2):411–418. doi: 10.1007/BF00020194. [DOI] [PubMed] [Google Scholar]
- Fleming A. J., Mandel T., Hofmann S., Sterk P., de Vries S. C., Kuhlemeier C. Expression pattern of a tobacco lipid transfer protein gene within the shoot apex. Plant J. 1992 Nov;2(6):855–862. [PubMed] [Google Scholar]
- Fleming A. J., Mandel T., Roth I., Kuhlemeier C. The patterns of gene expression in the tomato shoot apical meristem. Plant Cell. 1993 Mar;5(3):297–309. doi: 10.1105/tpc.5.3.297. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kader J. C., Julienne M., Vergnolle C. Purification and characterization of a spinach-leaf protein capable of transferring phospholipids from liposomes to mitochondria or chloroplasts. Eur J Biochem. 1984 Mar 1;139(2):411–416. doi: 10.1111/j.1432-1033.1984.tb08020.x. [DOI] [PubMed] [Google Scholar]
- Kalla R., Shimamoto K., Potter R., Nielsen P. S., Linnestad C., Olsen O. A. The promoter of the barley aleurone-specific gene encoding a putative 7 kDa lipid transfer protein confers aleurone cell-specific expression in transgenic rice. Plant J. 1994 Dec;6(6):849–860. doi: 10.1046/j.1365-313x.1994.6060849.x. [DOI] [PubMed] [Google Scholar]
- Koltunow A. M., Truettner J., Cox K. H., Wallroth M., Goldberg R. B. Different Temporal and Spatial Gene Expression Patterns Occur during Anther Development. Plant Cell. 1990 Dec;2(12):1201–1224. doi: 10.1105/tpc.2.12.1201. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuhlemeier C., Strittmatter G., Ward K., Chua N. H. The Pea rbcS-3A Promoter Mediates Light Responsiveness but not Organ Specificity. Plant Cell. 1989 Apr;1(4):471–478. doi: 10.1105/tpc.1.4.471. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Linnestad C., Lönneborg A., Kalla R., Olsen O. A. Promoter of a Lipid Transfer Protein Gene Expressed in Barley Aleurone Cells Contains Similar myb and myc Recognition Sites as the Maize Bz-McC Allele. Plant Physiol. 1991 Oct;97(2):841–843. doi: 10.1104/pp.97.2.841. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mandel T., Fleming A. J., Krähenbühl R., Kuhlemeier C. Definition of constitutive gene expression in plants: the translation initiation factor 4A gene as a model. Plant Mol Biol. 1995 Dec;29(5):995–1004. doi: 10.1007/BF00014972. [DOI] [PubMed] [Google Scholar]
- Molina A., García-Olmedo F. Developmental and pathogen-induced expression of three barley genes encoding lipid transfer proteins. Plant J. 1993 Dec;4(6):983–991. doi: 10.1046/j.1365-313x.1993.04060983.x. [DOI] [PubMed] [Google Scholar]
- Owttrim G. W., Mandel T., Trachsel H., Thomas A. A., Kuhlemeier C. Characterization of the tobacco eIF-4A gene family. Plant Mol Biol. 1994 Dec;26(6):1747–1757. doi: 10.1007/BF00019489. [DOI] [PubMed] [Google Scholar]
- Pelèse-Siebenbourg F., Caelles C., Kader J. C., Delseny M., Puigdomènech P. A pair of genes coding for lipid-transfer proteins in Sorghum vulgare. Gene. 1994 Oct 21;148(2):305–308. doi: 10.1016/0378-1119(94)90703-x. [DOI] [PubMed] [Google Scholar]
- Pyee J., Kolattukudy P. E. The gene for the major cuticular wax-associated protein and three homologous genes from broccoli (Brassica oleracea) and their expression patterns. Plant J. 1995 Jan;7(1):49–59. doi: 10.1046/j.1365-313x.1995.07010049.x. [DOI] [PubMed] [Google Scholar]
- Pyee J., Yu H., Kolattukudy P. E. Identification of a lipid transfer protein as the major protein in the surface wax of broccoli (Brassica oleracea) leaves. Arch Biochem Biophys. 1994 Jun;311(2):460–468. doi: 10.1006/abbi.1994.1263. [DOI] [PubMed] [Google Scholar]
- Sijmons P. C., Dekker B. M., Schrammeijer B., Verwoerd T. C., van den Elzen P. J., Hoekema A. Production of correctly processed human serum albumin in transgenic plants. Biotechnology (N Y) 1990 Mar;8(3):217–221. doi: 10.1038/nbt0390-217. [DOI] [PubMed] [Google Scholar]
- Skriver K., Leah R., Müller-Uri F., Olsen F. L., Mundy J. Structure and expression of the barley lipid transfer protein gene Ltp1. Plant Mol Biol. 1992 Feb;18(3):585–589. doi: 10.1007/BF00040674. [DOI] [PubMed] [Google Scholar]
- Straub P. F., Shen Q., Ho T. D. Structure and promoter analysis of an ABA- and stress-regulated barley gene, HVA1. Plant Mol Biol. 1994 Oct;26(2):617–630. doi: 10.1007/BF00013748. [DOI] [PubMed] [Google Scholar]
- Terras F. R., Goderis I. J., Van Leuven F., Vanderleyden J., Cammue B. P., Broekaert W. F. In Vitro Antifungal Activity of a Radish (Raphanus sativus L.) Seed Protein Homologous to Nonspecific Lipid Transfer Proteins. Plant Physiol. 1992 Oct;100(2):1055–1058. doi: 10.1104/pp.100.2.1055. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thoma S., Kaneko Y., Somerville C. A non-specific lipid transfer protein from Arabidopsis is a cell wall protein. Plant J. 1993 Mar;3(3):427–436. doi: 10.1046/j.1365-313x.1993.t01-25-00999.x. [DOI] [PubMed] [Google Scholar]
- Verrijzer C. P., Chen J. L., Yokomori K., Tjian R. Binding of TAFs to core elements directs promoter selectivity by RNA polymerase II. Cell. 1995 Jun 30;81(7):1115–1125. doi: 10.1016/s0092-8674(05)80016-9. [DOI] [PubMed] [Google Scholar]
- Wirtz K. W. Phospholipid transfer proteins. Annu Rev Biochem. 1991;60:73–99. doi: 10.1146/annurev.bi.60.070191.000445. [DOI] [PubMed] [Google Scholar]
