Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1996 Oct;112(2):615–622. doi: 10.1104/pp.112.2.615

Fruit-specific expression of a defensin-type gene family in bell pepper. Upregulation during ripening and upon wounding.

B Meyer 1, G Houlné 1, J Pozueta-Romero 1, M L Schantz 1, R Schantz 1
PMCID: PMC157985  PMID: 8883377

Abstract

We have isolated a 454-bp cDNA that encodes a novel fruit specific defensin from bell pepper (Capsicum annuum). The encoded 75-amino-acid polypeptide contains an N-terminal domain characteristic of a signal peptide and a 48-amino-acid mature domain named J1. The mature protein, from which the N-terminal amino acid sequence was determined, contains eight cysteines that from four intramolecular disulfide bridges, suggesting a monomeric form for J1. In healthy fruits J1 is undetectable at the green stage but high levels accumulate during ripening. In wound areas of the green fruit the accumulation of J1 dramatically increased, suggesting a role for J1 in the plant's defense response. Moreover, we have demonstrated that J1 possesses an antifungal activity. We have isolated and characterized the corresponding two homologous genes (j1-1 and j1-2) that exist in the bell pepper genome. Both genes are interrupted by the insertion, at the same position, of one intron of 853 bp for j1-1 and 4900 bp for j1-2. Northern blot and reverse transcriptase-polymerase chain reaction and restriction fragment length polymorphism analyses revealed that j1-1 transcripts are present only in fruits, only in trace amounts in mature green fruits, and that they accumulate to high levels in fully ripe fruits, whereas no j1-2 transcripts were detected in the samples monitored.

Full Text

The Full Text of this article is available as a PDF (2.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bohlmann H., Clausen S., Behnke S., Giese H., Hiller C., Reimann-Philipp U., Schrader G., Barkholt V., Apel K. Leaf-specific thionins of barley-a novel class of cell wall proteins toxic to plant-pathogenic fungi and possibly involved in the defence mechanism of plants. EMBO J. 1988 Jun;7(6):1559–1565. doi: 10.1002/j.1460-2075.1988.tb02980.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bonmatin J. M., Bonnat J. L., Gallet X., Vovelle F., Ptak M., Reichhart J. M., Hoffmann J. A., Keppi E., Legrain M., Achstetter T. Two-dimensional 1H NMR study of recombinant insect defensin A in water: resonance assignments, secondary structure and global folding. J Biomol NMR. 1992 May;2(3):235–256. doi: 10.1007/BF01875319. [DOI] [PubMed] [Google Scholar]
  3. Bontems F., Roumestand C., Gilquin B., Ménez A., Toma F. Refined structure of charybdotoxin: common motifs in scorpion toxins and insect defensins. Science. 1991 Dec 6;254(5037):1521–1523. doi: 10.1126/science.1720574. [DOI] [PubMed] [Google Scholar]
  4. Bruix M., Jiménez M. A., Santoro J., González C., Colilla F. J., Méndez E., Rico M. Solution structure of gamma 1-H and gamma 1-P thionins from barley and wheat endosperm determined by 1H-NMR: a structural motif common to toxic arthropod proteins. Biochemistry. 1993 Jan 19;32(2):715–724. doi: 10.1021/bi00053a041. [DOI] [PubMed] [Google Scholar]
  5. Colilla F. J., Rocher A., Mendez E. gamma-Purothionins: amino acid sequence of two polypeptides of a new family of thionins from wheat endosperm. FEBS Lett. 1990 Sep 17;270(1-2):191–194. doi: 10.1016/0014-5793(90)81265-p. [DOI] [PubMed] [Google Scholar]
  6. Gu Q., Kawata E. E., Morse M. J., Wu H. M., Cheung A. Y. A flower-specific cDNA encoding a novel thionin in tobacco. Mol Gen Genet. 1992 Jul;234(1):89–96. doi: 10.1007/BF00272349. [DOI] [PubMed] [Google Scholar]
  7. Houlné G., Schantz M. L., Meyer B., Pozueta-Romero J., Schantz R. A chromoplast-specific protein in Capsicum annuum: characterization and expression of the corresponding gene. Curr Genet. 1994 Nov-Dec;26(5-6):524–527. doi: 10.1007/BF00309944. [DOI] [PubMed] [Google Scholar]
  8. Karunanandaa B., Singh A., Kao T. H. Characterization of a predominantly pistil-expressed gene encoding a gamma-thionin-like protein of Petunia inflata. Plant Mol Biol. 1994 Oct;26(1):459–464. doi: 10.1007/BF00039555. [DOI] [PubMed] [Google Scholar]
  9. Kragh K. M., Nielsen J. E., Nielsen K. K., Dreboldt S., Mikkelsen J. D. Characterization and localization of new antifungal cysteine-rich proteins from Beta vulgaris. Mol Plant Microbe Interact. 1995 May-Jun;8(3):424–434. doi: 10.1094/mpmi-8-0424. [DOI] [PubMed] [Google Scholar]
  10. Mendez E., Moreno A., Colilla F., Pelaez F., Limas G. G., Mendez R., Soriano F., Salinas M., de Haro C. Primary structure and inhibition of protein synthesis in eukaryotic cell-free system of a novel thionin, gamma-hordothionin, from barley endosperm. Eur J Biochem. 1990 Dec 12;194(2):533–539. doi: 10.1111/j.1432-1033.1990.tb15649.x. [DOI] [PubMed] [Google Scholar]
  11. Pozueta-Romero J., Klein M., Houlné G., Schantz M. L., Meyer B., Schantz R. Characterization of a family of genes encoding a fruit-specific wound-stimulated protein of bell pepper (Capsicum annuum): identification of a new family of transposable elements. Plant Mol Biol. 1995 Sep;28(6):1011–1025. doi: 10.1007/BF00032663. [DOI] [PubMed] [Google Scholar]
  12. Schägger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368–379. doi: 10.1016/0003-2697(87)90587-2. [DOI] [PubMed] [Google Scholar]
  13. Song K., Osborn T. C. A method for examining expression of homologous genes in plant polyploids. Plant Mol Biol. 1994 Nov;26(4):1065–1071. doi: 10.1007/BF00040689. [DOI] [PubMed] [Google Scholar]
  14. Zhang H., Scholl R., Browse J., Somerville C. Double stranded DNA sequencing as a choice for DNA sequencing. Nucleic Acids Res. 1988 Feb 11;16(3):1220–1220. doi: 10.1093/nar/16.3.1220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. von Heijne G. A new method for predicting signal sequence cleavage sites. Nucleic Acids Res. 1986 Jun 11;14(11):4683–4690. doi: 10.1093/nar/14.11.4683. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES