Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1996 Oct;112(2):659–667. doi: 10.1104/pp.112.2.659

Subcellular Location of O-Acetylserine Sulfhydrylase Isoenzymes in Cell Cultures and Plant Tissues of Datura innoxia Mill.

C R Kuske 1, K K Hill 1, E Guzman 1, P J Jackson 1
PMCID: PMC157990  PMID: 12226419

Abstract

O-Acetylserine sulfhydrylase (OASS; EC 4.2.99.8) catalyzes the formation of L-cysteine from O-acetylserine and inorganic sulfide. Three OASS isoenzymes that differ in molecular mass and subunit structure are present in shoot and root tissues and in cadmium-resistant and cadmium-susceptible cell cultures of Datura innoxia Mill. Different OASS forms predominate in leaves, roots, and suspension-cell cultures. To determine the subcellular location of the OASS isoenzymes, purified mitochondria, chloroplasts, and cytosolic fractions from protoplasts were obtained. The isoenzymes are compartmentalized in D. innoxia cells, with a different isoenzyme predominant in the chloroplast, cytosol, and mitochondria, suggesting that they serve different functions in the plant cell. The chloroplast form is most abundant in green leaves and leaf protoplasts. The cytosolic form is most abundant in roots and cell cultures. A mitochondrial form is abundant in cell cultures, but is a minor form in leaves or roots. Cadmium-tolerant cell cultures contain 1.8 times as much constitutive OASS activity as the wild-type cell line, and 2.9 times more than the cadmium-hypersensitive cell line. This may facilitate rapid production of glutathione and metal-binding phytochelatins when these cultures are exposed to cadmium.

Full Text

The Full Text of this article is available as a PDF (947.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bard J., Bourque D. P., Hildebrand M., Zaitlin D. In vitro expression of chloroplast genes in lysates of higher plant chloroplasts. Proc Natl Acad Sci U S A. 1985 Jun;82(12):3983–3987. doi: 10.1073/pnas.82.12.3983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  3. Brunold C., Schiff J. A. Studies of sulfate utilization of algae: 15. Enzymes of assimilatory sulfate reduction in euglena and their cellular localization. Plant Physiol. 1976 Mar;57(3):430–436. doi: 10.1104/pp.57.3.430. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cooper T. G., Beevers H. Mitochondria and glyoxysomes from castor bean endosperm. Enzyme constitutents and catalytic capacity. J Biol Chem. 1969 Jul 10;244(13):3507–3513. [PubMed] [Google Scholar]
  5. Delhaize E., Jackson P. J., Lujan L. D., Robinson N. J. Poly(gamma-glutamylcysteinyl)glycine Synthesis in Datura innoxia and Binding with Cadmium : Role in Cadmium Tolerance. Plant Physiol. 1989 Feb;89(2):700–706. doi: 10.1104/pp.89.2.700. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Droux M., Martin J., Sajus P., Douce R. Purification and characterization of O-acetylserine (thiol) lyase from spinach chloroplasts. Arch Biochem Biophys. 1992 Jun;295(2):379–390. doi: 10.1016/0003-9861(92)90531-z. [DOI] [PubMed] [Google Scholar]
  7. Gaitonde M. K. A spectrophotometric method for the direct determination of cysteine in the presence of other naturally occurring amino acids. Biochem J. 1967 Aug;104(2):627–633. doi: 10.1042/bj1040627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hell R., Bork C., Bogdanova N., Frolov I., Hauschild R. Isolation and characterization of two cDNAs encoding for compartment specific isoforms of O-acetylserine (thiol) lyase from Arabidopsis thaliana. FEBS Lett. 1994 Sep 5;351(2):257–262. doi: 10.1016/0014-5793(94)00872-8. [DOI] [PubMed] [Google Scholar]
  9. Jackson C., Dench J. E., Hall D. O., Moore A. L. Separation of mitochondria from contaminating subcellular structures utilizing silica sol gradient centrifugation. Plant Physiol. 1979 Jul;64(1):150–153. doi: 10.1104/pp.64.1.150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jackson P. J., Roth E. J., McClure P. R., Naranjo C. M. Selection, Isolation, and Characterization of Cadmium-Resistant Datura innoxia Suspension Cultures. Plant Physiol. 1984 Aug;75(4):914–918. doi: 10.1104/pp.75.4.914. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kredich N. M., Becker M. A., Tomkins G. M. Purification and characterization of cysteine synthetase, a bifunctional protein complex, from Salmonella typhimurium. J Biol Chem. 1969 May 10;244(9):2428–2439. [PubMed] [Google Scholar]
  12. Kredich N. M., Tomkins G. M. The enzymic synthesis of L-cysteine in Escherichia coli and Salmonella typhimurium. J Biol Chem. 1966 Nov 10;241(21):4955–4965. [PubMed] [Google Scholar]
  13. Kuske C. R., Ticknor L. O., Guzmán E., Gurley L. R., Valdez J. G., Thompson M. E., Jackson P. J. Purification and characterization of O-acetylserine sulfhydrylase isoenzymes from Datura innoxia. J Biol Chem. 1994 Feb 25;269(8):6223–6232. [PubMed] [Google Scholar]
  14. Lunn J. E., Droux M., Martin J., Douce R. Localization of ATP Sulfurylase and O-Acetylserine(thiol)lyase in Spinach Leaves. Plant Physiol. 1990 Nov;94(3):1345–1352. doi: 10.1104/pp.94.3.1345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Nussbaum S., Schmutz D., Brunold C. Regulation of Assimilatory Sulfate Reduction by Cadmium in Zea mays L. Plant Physiol. 1988 Dec;88(4):1407–1410. doi: 10.1104/pp.88.4.1407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Rauser W. E. Phytochelatins. Annu Rev Biochem. 1990;59:61–86. doi: 10.1146/annurev.bi.59.070190.000425. [DOI] [PubMed] [Google Scholar]
  17. Rauser W. E., Schupp R., Rennenberg H. Cysteine, gamma-Glutamylcysteine, and Glutathione Levels in Maize Seedlings : Distribution and Translocation in Normal and Cadmium-Exposed Plants. Plant Physiol. 1991 Sep;97(1):128–138. doi: 10.1104/pp.97.1.128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rolland N., Droux M., Douce R. Subcellular Distribution of O-Acetylserine(thiol)lyase in Cauliflower (Brassica oleracea L.) Inflorescence. Plant Physiol. 1992 Mar;98(3):927–935. doi: 10.1104/pp.98.3.927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ruffet M. L., Droux M., Douce R. Purification and Kinetic Properties of Serine Acetyltransferase Free of O-Acetylserine(thiol)lyase from Spinach Chloroplasts. Plant Physiol. 1994 Feb;104(2):597–604. doi: 10.1104/pp.104.2.597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ruffet M. L., Lebrun M., Droux M., Douce R. Subcellular distribution of serine acetyltransferase from Pisum sativum and characterization of an Arabidopsis thaliana putative cytosolic isoform. Eur J Biochem. 1995 Jan 15;227(1-2):500–509. doi: 10.1111/j.1432-1033.1995.tb20416.x. [DOI] [PubMed] [Google Scholar]
  21. Schmitt J. M., Behnke H. D., Herrmann R. G. Suitability of silica sol gradients for purification of cell organelles. Exp Cell Res. 1974 Mar 30;85(1):63–72. doi: 10.1016/0014-4827(74)90213-4. [DOI] [PubMed] [Google Scholar]
  22. Tolbert N. E., Yamazaki R. K., Oeser A. Localization and properties of hydroxypyruvate and glyoxylate reductases in spinach leaf particles. J Biol Chem. 1970 Oct 10;245(19):5129–5136. [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES