Abstract
At low-CO2 (air) conditions, the unicellular green alga Chlamydomonas reinhardtii acquires the ability to raise its internal inorganic carbon concentration. To study this adaptation to low CO2, cDNA clones induced under low-CO2 growth conditions were selected through differential screening. One full-length clone is 2552 bp, with an open reading frame encoding 521 amino acids. The deduced amino acid sequence shows about 50% identity with alanine: alpha-ketogutarate aminotransferase (Ala AT, EC 2.6.1.2) from plants and animals, and the mRNA of this clone increased 4- to 5-fold 4 h after cells were switched from high-CO2 to low-CO2 growth conditions. The expression of the enzyme and its activity also increased accordingly at low-CO2 growth conditions. To study the physiological role of Ala AT, a pyridoxal phosphate inhibitor, aminooxyacetic acid, was added at 40 microM to the growth medium when cells were beginning to adapt to low CO2. This caused a 30% decrease in the maximum photosynthetic rate in air-adapting cells 8 h later. The addition of the inhibitor also caused the cells to excrete glycolate, a photorespiratory intermediate, but did not change the apparent affinity of the cell for external CO2. These physiological studies are consistent with the assumption that Ala AT is involved in the adaptation to low-CO2 conditions.
Full Text
The Full Text of this article is available as a PDF (1.9 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
- Badger M. R., Kaplan A., Berry J. A. Internal Inorganic Carbon Pool of Chlamydomonas reinhardtii: EVIDENCE FOR A CARBON DIOXIDE-CONCENTRATING MECHANISM. Plant Physiol. 1980 Sep;66(3):407–413. doi: 10.1104/pp.66.3.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Coleman J. R., Grossman A. R. Biosynthesis of carbonic anhydrase in Chlamydomonas reinhardtii during adaptation to low CO(2). Proc Natl Acad Sci U S A. 1984 Oct;81(19):6049–6053. doi: 10.1073/pnas.81.19.6049. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fukuzawa H., Fujiwara S., Yamamoto Y., Dionisio-Sese M. L., Miyachi S. cDNA cloning, sequence, and expression of carbonic anhydrase in Chlamydomonas reinhardtii: regulation by environmental CO2 concentration. Proc Natl Acad Sci U S A. 1990 Jun;87(11):4383–4387. doi: 10.1073/pnas.87.11.4383. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ishiguro M., Suzuki M., Takio K., Matsuzawa T., Titani K. Complete amino acid sequence of rat liver cytosolic alanine aminotransferase. Biochemistry. 1991 Jun 18;30(24):6048–6053. doi: 10.1021/bi00238a031. [DOI] [PubMed] [Google Scholar]
- Ishiguro M., Takio K., Suzuki M., Oyama R., Matsuzawa T., Titani K. Complete amino acid sequence of human liver cytosolic alanine aminotransferase (GPT) determined by a combination of conventional and mass spectral methods. Biochemistry. 1991 Oct 29;30(43):10451–10457. doi: 10.1021/bi00107a013. [DOI] [PubMed] [Google Scholar]
- Izumi Y., Yoshida T., Yamada H. Purification and characterization of serine-glyoxylate aminotransferase from a serine-producing methylotroph, Hyphomicrobium methylovorum GM2. Eur J Biochem. 1990 Jun 20;190(2):285–290. doi: 10.1111/j.1432-1033.1990.tb15574.x. [DOI] [PubMed] [Google Scholar]
- Katzman G. L., Carlson S. J., Marcus Y., Moroney J. V., Togasaki R. K. Carbonic Anhydrase Activity in Isolated Chloroplasts of Wild-Type and High-CO2-Dependent Mutants of Chlamydomonas reinhardtii as Studied by a New Assay. Plant Physiol. 1994 Aug;105(4):1197–1202. doi: 10.1104/pp.105.4.1197. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Manuel L. J., Moroney J. V. Inorganic Carbon Accumulation by Chlamydomonas reinhardtii: New Proteins are made During Adaptation to Low CO(2). Plant Physiol. 1988 Oct;88(2):491–496. doi: 10.1104/pp.88.2.491. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marek L. F., Spalding M. H. Changes in Photorespiratory Enzyme Activity in Response to Limiting CO(2) in Chlamydomonas reinhardtii. Plant Physiol. 1991 Sep;97(1):420–425. doi: 10.1104/pp.97.1.420. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moroney J. V., Husic H. D., Tolbert N. E., Kitayama M., Manuel L. J., Togasaki R. K. Isolation and Characterization of a Mutant of Chlamydomonas reinhardtii Deficient in the CO(2) Concentrating Mechanism. Plant Physiol. 1989 Mar;89(3):897–903. doi: 10.1104/pp.89.3.897. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moroney J. V., Tolbert N. E. Inorganic Carbon Uptake by Chlamydomonas reinhardtii. Plant Physiol. 1985 Feb;77(2):253–258. doi: 10.1104/pp.77.2.253. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ramazanov Z., Mason C. B., Geraghty A. M., Spalding M. H., Moroney J. V. The Low CO2-Inducible 36-Kilodalton Protein Is Localized to the Chloroplast Envelope of Chlamydomonas reinhardtii. Plant Physiol. 1993 Apr;101(4):1195–1199. doi: 10.1104/pp.101.4.1195. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Son D., Sugiyama T. Molecular cloning of an alanine aminotransferase from NAD-malic enzyme type C4 plant Panicum miliaceum. Plant Mol Biol. 1992 Nov;20(4):705–713. doi: 10.1007/BF00046455. [DOI] [PubMed] [Google Scholar]
- Spalding M. H., Jeffrey M. Membrane-Associated Polypeptides Induced in Chlamydomonas by Limiting CO(2) Concentrations. Plant Physiol. 1989 Jan;89(1):133–137. doi: 10.1104/pp.89.1.133. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sueoka N. MITOTIC REPLICATION OF DEOXYRIBONUCLEIC ACID IN CHLAMYDOMONAS REINHARDI. Proc Natl Acad Sci U S A. 1960 Jan;46(1):83–91. doi: 10.1073/pnas.46.1.83. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tolbert N. E., Harrison M., Selph N. Aminooxyacetate stimulation of glycolate formation and excretion by chlamydomonas. Plant Physiol. 1983 Aug;72(4):1075–1083. doi: 10.1104/pp.72.4.1075. [DOI] [PMC free article] [PubMed] [Google Scholar]