Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1996 Oct;112(2):685–695. doi: 10.1104/pp.112.2.685

Both 5' and 3' sequences of maize adh1 mRNA are required for enhanced translation under low-oxygen conditions.

J Bailey-Serres 1, R K Dawe 1
PMCID: PMC157993  PMID: 8883381

Abstract

Alcohol dehydrogenase-1 (ADH1) synthesis in O2-deprived roots of maize (Zea mays L.) results from induced transcription and selective translation of ADH1 mRNA. The effect of ADH1 mRNA sequences on message stability and translation was studied in protoplasts of the maize cell line P3377.5' capped and 3' polyadenylated mRNA constructs containing the firefly gene (luc) for luciferase (LUC) or the Escherichia coli gene (uidA) for beta-glucuronidase (GUS) coding region were synthesized in vitro and electroporated into protoplasts that were cultured at 40 or 5% O2. A LUC mRNA with a 17-nucleotide polylinker 5' untranslated region (UTR) was expressed 10-fold higher under aerobic conditions than under hypoxic conditions. Expression of five chimeric ADH1-GUS mRNAs was measured relative to this LUC mRNA. An mRNA containing the 5'-UTR and the first 18 codons of adh1 in a translational fusion with the GUS coding region and followed by the 3'-UTR of adh1 was expressed 57-fold higher at 5% O2. Progressive deletion of adh1 5'-UTR and coding sequences reduced expression of the GUS-mRNA at 5% O2, but had little impact on expression of 40% O2. Enhancement of expression in hypoxic protoplasts conferred by the adh1 5'-UTR and the first 26 codons decreased more than 3-fold when the adh1 3'-UTR was removed. In addition, the adh1 3'-UTR slightly inhibited expression in aerobic protoplasts. The physical half-lives of the GUS and LUC mRNAs were similar under both anaerobic and hypoxic conditions, indicating that expression levels were largely independent of mRNA stability. Thus, both adh1 5' and 3' mRNA sequences are required for enhanced translation in protoplasts under O2 deprivation.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Apuya N. R., Zimmerman J. L. Heat Shock Gene Expression Is Controlled Primarily at the Translational Level in Carrot Cells and Somatic Embryos. Plant Cell. 1992 Jun;4(6):657–665. doi: 10.1105/tpc.4.6.657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bailey-Serres J., Nguyen M. T. Purification and characterization of cytosolic 6-phosphogluconate dehydrogenase isozymes from maize. Plant Physiol. 1992 Nov;100(3):1580–1583. doi: 10.1104/pp.100.3.1580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bennetzen J. L., Swanson J., Taylor W. C., Freeling M. DNA insertion in the first intron of maize Adh1 affects message levels: cloning of progenitor and mutant Adh1 alleles. Proc Natl Acad Sci U S A. 1984 Jul;81(13):4125–4128. doi: 10.1073/pnas.81.13.4125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Browning K. S., Lax S. R., Humphreys J., Ravel J. M., Jobling S. A., Gehrke L. Evidence that the 5'-untranslated leader of mRNA affects the requirement for wheat germ initiation factors 4A, 4F, and 4G. J Biol Chem. 1988 Jul 15;263(20):9630–9634. [PubMed] [Google Scholar]
  5. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  6. Dickey L. F., Nguyen T. T., Allen G. C., Thompson W. F. Light modulation of ferredoxin mRNA abundance requires an open reading frame. Plant Cell. 1994 Aug;6(8):1171–1176. doi: 10.1105/tpc.6.8.1171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fennoy S. L., Bailey-Serres J. Synonymous codon usage in Zea mays L. nuclear genes is varied by levels of C and G-ending codons. Nucleic Acids Res. 1993 Nov 25;21(23):5294–5300. doi: 10.1093/nar/21.23.5294. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fletcher L., Corbin S. D., Browning K. S., Ravel J. M. The absence of a m7G cap on beta-globin mRNA and alfalfa mosaic virus RNA 4 increases the amounts of initiation factor 4F required for translation. J Biol Chem. 1990 Nov 15;265(32):19582–19587. [PubMed] [Google Scholar]
  9. Gallie D. R., Caldwell C., Pitto L. Heat Shock Disrupts Cap and Poly(A) Tail Function during Translation and Increases mRNA Stability of Introduced Reporter mRNA. Plant Physiol. 1995 Aug;108(4):1703–1713. doi: 10.1104/pp.108.4.1703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gallie D. R., Feder J. N., Schimke R. T., Walbot V. Post-transcriptional regulation in higher eukaryotes: the role of the reporter gene in controlling expression. Mol Gen Genet. 1991 Aug;228(1-2):258–264. doi: 10.1007/BF00282474. [DOI] [PubMed] [Google Scholar]
  11. Gallie D. R., Sleat D. E., Watts J. W., Turner P. C., Wilson T. M. A comparison of eukaryotic viral 5'-leader sequences as enhancers of mRNA expression in vivo. Nucleic Acids Res. 1987 Nov 11;15(21):8693–8711. doi: 10.1093/nar/15.21.8693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gallie D. R., Young T. E. The regulation of gene expression in transformed maize aleurone and endosperm protoplasts. Analysis of promoter activity, intron enhancement, and mRNA untranslated regions on expression. Plant Physiol. 1994 Nov;106(3):929–939. doi: 10.1104/pp.106.3.929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jefferson R. A., Kavanagh T. A., Bevan M. W. GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 1987 Dec 20;6(13):3901–3907. doi: 10.1002/j.1460-2075.1987.tb02730.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Joshi C. P., Nguyen H. T. 5' untranslated leader sequences of eukaryotic mRNAs encoding heat shock induced proteins. Nucleic Acids Res. 1995 Feb 25;23(4):541–549. doi: 10.1093/nar/23.4.541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kloeckener-Gruissem B., Vogel J. M., Freeling M. The TATA box promoter region of maize Adh1 affects its organ-specific expression. EMBO J. 1992 Jan;11(1):157–166. doi: 10.1002/j.1460-2075.1992.tb05038.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Koren G., Lau A., Klein J., Golas C., Bologa-Campeanu M., Soldin S., MacLeod S. M., Prober C. Pharmacokinetics and adverse effects of amphotericin B in infants and children. J Pediatr. 1988 Sep;113(3):559–563. doi: 10.1016/s0022-3476(88)80653-x. [DOI] [PubMed] [Google Scholar]
  17. Kozak M. Determinants of translational fidelity and efficiency in vertebrate mRNAs. Biochimie. 1994;76(9):815–821. doi: 10.1016/0300-9084(94)90182-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Leathers V., Tanguay R., Kobayashi M., Gallie D. R. A phylogenetically conserved sequence within viral 3' untranslated RNA pseudoknots regulates translation. Mol Cell Biol. 1993 Sep;13(9):5331–5347. doi: 10.1128/mcb.13.9.5331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Luehrsen K. R., de Wet J. R., Walbot V. Transient expression analysis in plants using firefly luciferase reporter gene. Methods Enzymol. 1992;216:397–414. doi: 10.1016/0076-6879(92)16037-k. [DOI] [PubMed] [Google Scholar]
  20. Michelet B., Lukaszewicz M., Dupriez V., Boutry M. A plant plasma membrane proton-ATPase gene is regulated by development and environment and shows signs of a translational regulation. Plant Cell. 1994 Oct;6(10):1375–1389. doi: 10.1105/tpc.6.10.1375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Nover L., Scharf K. D., Neumann D. Cytoplasmic heat shock granules are formed from precursor particles and are associated with a specific set of mRNAs. Mol Cell Biol. 1989 Mar;9(3):1298–1308. doi: 10.1128/mcb.9.3.1298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Olive M. R., Walker J. C., Singh K., Dennis E. S., Peacock W. J. Functional properties of the anaerobic responsive element of the maize Adh1 gene. Plant Mol Biol. 1990 Oct;15(4):593–604. doi: 10.1007/BF00017834. [DOI] [PubMed] [Google Scholar]
  23. Perlak F. J., Fuchs R. L., Dean D. A., McPherson S. L., Fischhoff D. A. Modification of the coding sequence enhances plant expression of insect control protein genes. Proc Natl Acad Sci U S A. 1991 Apr 15;88(8):3324–3328. doi: 10.1073/pnas.88.8.3324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Pitto L., Gallie D. R., Walbot V. Role of the Leader Sequence during Thermal Repression of Translation in Maize, Tobacco, and Carrot Protoplasts. Plant Physiol. 1992 Dec;100(4):1827–1833. doi: 10.1104/pp.100.4.1827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sachs M. M., Dennis E. S., Gerlach W. L., Peacock W. J. Two Alleles of Maize ALCOHOL DEHYDROGENASE 1 Have 3' Structural and Poly(a) Addition Polymorphisms. Genetics. 1986 Jun;113(2):449–467. doi: 10.1093/genetics/113.2.449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sachs M. M., Freeling M., Okimoto R. The anaerobic proteins of maize. Cell. 1980 Jul;20(3):761–767. doi: 10.1016/0092-8674(80)90322-0. [DOI] [PubMed] [Google Scholar]
  27. Timmer R. T., Benkowski L. A., Schodin D., Lax S. R., Metz A. M., Ravel J. M., Browning K. S. The 5' and 3' untranslated regions of satellite tobacco necrosis virus RNA affect translational efficiency and dependence on a 5' cap structure. J Biol Chem. 1993 May 5;268(13):9504–9510. [PubMed] [Google Scholar]
  28. Walker J. C., Howard E. A., Dennis E. S., Peacock W. J. DNA sequences required for anaerobic expression of the maize alcohol dehydrogenase 1 gene. Proc Natl Acad Sci U S A. 1987 Oct;84(19):6624–6628. doi: 10.1073/pnas.84.19.6624. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Webster C., Gaut R. L., Browning K. S., Ravel J. M., Roberts J. K. Hypoxia enhances phosphorylation of eukaryotic initiation factor 4A in maize root tips. J Biol Chem. 1991 Dec 5;266(34):23341–23346. [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES