Abstract
A saturable and temperature-dependent copper uptake pathway has been identified in Chlamydomonas reinhardtii. The uptake system has a high affinity for copper ions (Km approximately 0.2 microM) and is more active in cells that are adapted to copper deficiency than to cells grown in a medium containing physiological (submicromolar to micromolar) copper ion concentrations. The maximum velocity of copper uptake by copper-deficient cells (169 pmol h-1 10(6) cells-1 or 62 ng min-1 mg-1 chlorophyll) is up to 20-fold greater than that of fully copper-supplemented cells, and the Km (approximately 2 x 10(2) nM) is unaffected. Thus, the same uptake system appears to operate in both copper-replete and copper-deficient cells, but its expression or activity must be induced under copper-deficient conditions. A cupric reductase activity is also increased in copper-deficient compared with copper-sufficient cells. The physiological characteristics of the regulation of this cupric reductase are compatible with its involvement in the uptake pathway. Despite the operation of the uptake pathway under both copper-replete and copper-deficient conditions, C. reinhardtii cells maintained in fully copper-supplemented cells do not accumulate copper in excess of their metabolic need. These results provide evidence for a homeostatic mechanism for copper metabolism in C. reinhardtii.
Full Text
The Full Text of this article is available as a PDF (1.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson G. J., Lesuisse E., Dancis A., Roman D. G., Labbe P., Klausner R. D. Ferric iron reduction and iron assimilation in Saccharomyces cerevisiae. J Inorg Biochem. 1992 Aug 15;47(3-4):249–255. doi: 10.1016/0162-0134(92)84070-4. [DOI] [PubMed] [Google Scholar]
- André E., Kessler M., Briquel M. E., Alexandre P., Hurault de Ligny B., Huriet C. Intérêt pratique du dosage des produits de dégradation de la fibrine urinaire dans la surveillance précoce des transplantés rénaux. Pathol Biol (Paris) 1983 Jan;31(1):23–27. [PubMed] [Google Scholar]
- Askwith C., Eide D., Van Ho A., Bernard P. S., Li L., Davis-Kaplan S., Sipe D. M., Kaplan J. The FET3 gene of S. cerevisiae encodes a multicopper oxidase required for ferrous iron uptake. Cell. 1994 Jan 28;76(2):403–410. doi: 10.1016/0092-8674(94)90346-8. [DOI] [PubMed] [Google Scholar]
- Brown N. L., Rouch D. A., Lee B. T. Copper resistance determinants in bacteria. Plasmid. 1992 Jan;27(1):41–51. doi: 10.1016/0147-619x(92)90005-u. [DOI] [PubMed] [Google Scholar]
- Dancis A., Klausner R. D., Hinnebusch A. G., Barriocanal J. G. Genetic evidence that ferric reductase is required for iron uptake in Saccharomyces cerevisiae. Mol Cell Biol. 1990 May;10(5):2294–2301. doi: 10.1128/mcb.10.5.2294. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dancis A., Yuan D. S., Haile D., Askwith C., Eide D., Moehle C., Kaplan J., Klausner R. D. Molecular characterization of a copper transport protein in S. cerevisiae: an unexpected role for copper in iron transport. Cell. 1994 Jan 28;76(2):393–402. doi: 10.1016/0092-8674(94)90345-x. [DOI] [PubMed] [Google Scholar]
- Eide D., Davis-Kaplan S., Jordan I., Sipe D., Kaplan J. Regulation of iron uptake in Saccharomyces cerevisiae. The ferrireductase and Fe(II) transporter are regulated independently. J Biol Chem. 1992 Oct 15;267(29):20774–20781. [PubMed] [Google Scholar]
- Guerinot M. L., Yi Y. Iron: Nutritious, Noxious, and Not Readily Available. Plant Physiol. 1994 Mar;104(3):815–820. doi: 10.1104/pp.104.3.815. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harris E. D. Iron-copper interactions: some new revelations. Nutr Rev. 1994 Sep;52(9):311–315. doi: 10.1111/j.1753-4887.1994.tb01462.x. [DOI] [PubMed] [Google Scholar]
- Hassett R., Kosman D. J. Evidence for Cu(II) reduction as a component of copper uptake by Saccharomyces cerevisiae. J Biol Chem. 1995 Jan 6;270(1):128–134. doi: 10.1074/jbc.270.1.128. [DOI] [PubMed] [Google Scholar]
- Hill K. L., Merchant S. Coordinate expression of coproporphyrinogen oxidase and cytochrome c6 in the green alga Chlamydomonas reinhardtii in response to changes in copper availability. EMBO J. 1995 Mar 1;14(5):857–865. doi: 10.1002/j.1460-2075.1995.tb07067.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hill K. L., Merchant S. In Vivo Competition between Plastocyanin and a Copper-Dependent Regulator of the Chlamydomonas reinhardtii Cytochrome c(6) Gene. Plant Physiol. 1992 Sep;100(1):319–326. doi: 10.1104/pp.100.1.319. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holden M. J., Crimmins T. J., Jr, Chaney R. L. Cu2+ Reduction by Tomato Root Plasma Membrane Vesicles. Plant Physiol. 1995 Jul;108(3):1093–1098. doi: 10.1104/pp.108.3.1093. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jungmann J., Reins H. A., Lee J., Romeo A., Hassett R., Kosman D., Jentsch S. MAC1, a nuclear regulatory protein related to Cu-dependent transcription factors is involved in Cu/Fe utilization and stress resistance in yeast. EMBO J. 1993 Dec 15;12(13):5051–5056. doi: 10.1002/j.1460-2075.1993.tb06198.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li H. H., Merchant S. Degradation of plastocyanin in copper-deficient Chlamydomonas reinhardtii. Evidence for a protease-susceptible conformation of the apoprotein and regulated proteolysis. J Biol Chem. 1995 Oct 6;270(40):23504–23510. doi: 10.1074/jbc.270.40.23504. [DOI] [PubMed] [Google Scholar]
- Lin C. M., Kosman D. J. Copper uptake in wild type and copper metallothionein-deficient Saccharomyces cerevisiae. Kinetics and mechanism. J Biol Chem. 1990 Jun 5;265(16):9194–9200. [PubMed] [Google Scholar]
- Merchant S., Bogorad L. Regulation by copper of the expression of plastocyanin and cytochrome c552 in Chlamydomonas reinhardi. Mol Cell Biol. 1986 Feb;6(2):462–469. doi: 10.1128/mcb.6.2.462. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Merchant S., Hill K., Howe G. Dynamic interplay between two copper-titrating components in the transcriptional regulation of cyt c6. EMBO J. 1991 Jun;10(6):1383–1389. doi: 10.1002/j.1460-2075.1991.tb07658.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mohanty N., Vass I., Demeter S. Copper Toxicity Affects Photosystem II Electron Transport at the Secondary Quinone Acceptor, Q(B). Plant Physiol. 1989 May;90(1):175–179. doi: 10.1104/pp.90.1.175. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Quinn J. M., Merchant S. Two copper-responsive elements associated with the Chlamydomonas Cyc6 gene function as targets for transcriptional activators. Plant Cell. 1995 May;7(5):623–628. doi: 10.1105/tpc.7.5.623. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Randell E. W., Parkes J. G., Olivieri N. F., Templeton D. M. Uptake of non-transferrin-bound iron by both reductive and nonreductive processes is modulated by intracellular iron. J Biol Chem. 1994 Jun 10;269(23):16046–16053. [PubMed] [Google Scholar]
- Rauser W. E. Phytochelatins. Annu Rev Biochem. 1990;59:61–86. doi: 10.1146/annurev.bi.59.070190.000425. [DOI] [PubMed] [Google Scholar]
- Robinson N. J., Tommey A. M., Kuske C., Jackson P. J. Plant metallothioneins. Biochem J. 1993 Oct 1;295(Pt 1):1–10. doi: 10.1042/bj2950001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vulpe C. D., Packman S. Cellular copper transport. Annu Rev Nutr. 1995;15:293–322. doi: 10.1146/annurev.nu.15.070195.001453. [DOI] [PubMed] [Google Scholar]
- Zhou P., Thiele D. J. Copper and gene regulation in yeast. Biofactors. 1993 May;4(2):105–115. [PubMed] [Google Scholar]