Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1996 Oct;112(2):727–733. doi: 10.1104/pp.112.2.727

The promoter for tomato 3-hydroxy-3-methylglutaryl coenzyme A reductase gene 2 has unusual regulatory elements that direct high-level expression.

N D Daraselia 1, S Tarchevskaya 1, J O Narita 1
PMCID: PMC157997  PMID: 8883384

Abstract

The promoter region of tomato (Lycopersicon esculentum) 3-hydroxy-3-methylglutaryl coenzyme A reductase gene 2 (HMG2) has been analyzed using the transient expression of HMG2-luciferase fusions in red fruit pericarp. The mRNA for HMG2 accumulates to high level during fruit ripening, in a pattern that coincides with the synthesis of the carotenoid lycopene. Unlike most promoters, the region that is upstream of the HMG2 TATA element is not required for high-level expression. The 180-bp region containing the TATA element, the 5' untranslated region, and the translation start site are comparable in strength of the full-length 35S cauliflower mosaic virus promoter. Pyrimidine-rich sequences present in the 5' untranslated leader are important in regulating expression. Also, the ATG start region has been found to increase translation efficiency by a factor of 4 to 10. An alternative hairpin secondary structure has been identified surrounding the HMG2 initiator ATG, which could participate in the translational regulation of this locus. HMG2 appears to be a novel class of strong plant promoters that incorporate unusual, positive regulators of gene expression.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aoyagi K., Beyou A., Moon K., Fang L., Ulrich T. Isolation and characterization of cDNAs encoding wheat 3-hydroxy-3-methylglutaryl coenzyme A reductase. Plant Physiol. 1993 Jun;102(2):623–628. doi: 10.1104/pp.102.2.623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bach T. J., Boronat A., Caelles C., Ferrer A., Weber T., Wettstein A. Aspects related to mevalonate biosynthesis in plants. Lipids. 1991 Aug;26(8):637–648. doi: 10.1007/BF02536429. [DOI] [PubMed] [Google Scholar]
  3. Beg Z. H., Stonik J. A., Brewer H. B., Jr Modulation of the enzymic activity of 3-hydroxy-3-methylglutaryl coenzyme A reductase by multiple kinase systems involving reversible phosphorylation: a review. Metabolism. 1987 Sep;36(9):900–917. doi: 10.1016/0026-0495(87)90101-6. [DOI] [PubMed] [Google Scholar]
  4. Bolle C., Sopory S., Lübberstedt T., Herrmann R. G., Oelmüller R. Segments encoding 5'-untranslated leaders of genes for thylakoid proteins contain cis-elements essential for transcription. Plant J. 1994 Oct;6(4):513–523. doi: 10.1046/j.1365-313x.1994.6040513.x. [DOI] [PubMed] [Google Scholar]
  5. Burnett R. J., Maldonado-Mendoza I. E., McKnight T. D., Nessler C. L. Expression of a 3-hydroxy-3-methylglutaryl coenzyme A reductase gene from Camptotheca acuminata is differentially regulated by wounding and methyl jasmonate. Plant Physiol. 1993 Sep;103(1):41–48. doi: 10.1104/pp.103.1.41. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Caelles C., Ferrer A., Balcells L., Hegardt F. G., Boronat A. Isolation and structural characterization of a cDNA encoding Arabidopsis thaliana 3-hydroxy-3-methylglutaryl coenzyme A reductase. Plant Mol Biol. 1989 Dec;13(6):627–638. doi: 10.1007/BF00016018. [DOI] [PubMed] [Google Scholar]
  7. Campos N., Boronat A. Targeting and topology in the membrane of plant 3-hydroxy-3-methylglutaryl coenzyme A reductase. Plant Cell. 1995 Dec;7(12):2163–2174. doi: 10.1105/tpc.7.12.2163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chin D. J., Luskey K. L., Faust J. R., MacDonald R. J., Brown M. S., Goldstein J. L. Molecular cloning of 3-hydroxy-3-methylglutaryl coenzyme a reductase and evidence for regulation of its mRNA. Proc Natl Acad Sci U S A. 1982 Dec;79(24):7704–7708. doi: 10.1073/pnas.79.24.7704. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Choi D., Ward B. L., Bostock R. M. Differential induction and suppression of potato 3-hydroxy-3-methylglutaryl coenzyme A reductase genes in response to Phytophthora infestans and to its elicitor arachidonic acid. Plant Cell. 1992 Oct;4(10):1333–1344. doi: 10.1105/tpc.4.10.1333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chye M. L., Kush A., Tan C. T., Chua N. H. Characterization of cDNA and genomic clones encoding 3-hydroxy-3-methylglutaryl-coenzyme A reductase from Hevea brasiliensis. Plant Mol Biol. 1991 Apr;16(4):567–577. doi: 10.1007/BF00023422. [DOI] [PubMed] [Google Scholar]
  11. Edwards P. A., Lan S. F., Fogelman A. M. Alterations in the rates of synthesis and degradation of rat liver 3-hydroxy-3-methylglutaryl coenzyme A reductase produced by cholestyramine and mevinolin. J Biol Chem. 1983 Sep 10;258(17):10219–10222. [PubMed] [Google Scholar]
  12. Edwards P. A., Popják G., Fogelman A. M., Edmond J. Control of 3-hydroxy-3-methylglutaryl coenzyme A reductase by endogenously synthesized sterols in vitro and in vivo. J Biol Chem. 1977 Feb 10;252(3):1057–1063. [PubMed] [Google Scholar]
  13. Gil G., Smith J. R., Goldstein J. L., Slaughter C. A., Orth K., Brown M. S., Osborne T. F. Multiple genes encode nuclear factor 1-like proteins that bind to the promoter for 3-hydroxy-3-methylglutaryl-coenzyme A reductase. Proc Natl Acad Sci U S A. 1988 Dec;85(23):8963–8967. doi: 10.1073/pnas.85.23.8963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Goldstein J. L., Brown M. S. Regulation of the mevalonate pathway. Nature. 1990 Feb 1;343(6257):425–430. doi: 10.1038/343425a0. [DOI] [PubMed] [Google Scholar]
  15. Montgomery J., Goldman S., Deikman J., Margossian L., Fischer R. L. Identification of an ethylene-responsive region in the promoter of a fruit ripening gene. Proc Natl Acad Sci U S A. 1993 Jul 1;90(13):5939–5943. doi: 10.1073/pnas.90.13.5939. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Narita J. O., Gruissem W. Tomato hydroxymethylglutaryl-CoA reductase is required early in fruit development but not during ripening. Plant Cell. 1989 Feb;1(2):181–190. doi: 10.1105/tpc.1.2.181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Park H., Denbow C. J., Cramer C. L. Structure and nucleotide sequence of tomato HMG2 encoding 3-hydroxy-3-methyl-glutaryl coenzyme A reductase. Plant Mol Biol. 1992 Oct;20(2):327–331. doi: 10.1007/BF00014502. [DOI] [PubMed] [Google Scholar]
  18. Simonet W. S., Ness G. C. Post-transcriptional regulation of 3-hydroxy-3-methylglutaryl-CoA reductase mRNA in rat liver. Glucocorticoids block the stabilization caused by thyroid hormones. J Biol Chem. 1989 Jan 5;264(1):569–573. [PubMed] [Google Scholar]
  19. Verdi J. M., Campagnoni A. T. Translational regulation by steroids. Identification of a steroid modulatory element in the 5'-untranslated region of the myelin basic protein messenger RNA. J Biol Chem. 1990 Nov 25;265(33):20314–20320. [PubMed] [Google Scholar]
  20. Yang Z., Park H., Lacy G. H., Cramer C. L. Differential activation of potato 3-hydroxy-3-methylglutaryl coenzyme A reductase genes by wounding and pathogen challenge. Plant Cell. 1991 Apr;3(4):397–405. doi: 10.1105/tpc.3.4.397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Zammit V. A., Easom R. A. Regulation of hepatic HMG-CoA reductase in vivo by reversible phosphorylation. Biochim Biophys Acta. 1987 Feb 18;927(2):223–228. doi: 10.1016/0167-4889(87)90138-8. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES