Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1996 Oct;112(2):759–766. doi: 10.1104/pp.112.2.759

Mechanism of proton permeation through chloroplast lipid membranes.

B Fuks 1, F Homblé 1
PMCID: PMC158000  PMID: 8883387

Abstract

Electrical measurements were carried out to investigate the contribution of chloroplast lipids to the passive proton permeability of both the thylakoid and inner-envelope membranes. Permeability coefficient and conductance to protons were measured for solvent-free bilayers made from monogalactosyldiglyceride:digalactosyldiglycerid: sulfoquinovosyldiglyceride:phosphatidylglycerol (2:1:0.5:0.5, w/w) in the presence of a pH gradient of 7.4/8.1. The permeability coefficient for protons in glycolipids was 5.5 +/- 1.1 x 10(-4) cm s-1 (n = 14). To determine whether this high H+ permeability could be explained by the presence of lipid contaminants such as weak acids, we investigated the effects of (a) bovine serum albumin, which can remove some amphiphilic molecules such as free fatty acids, (b) 6-ketocholestanol, which increases the membrane dipole potential, (c) oleic acid, and (d) chlorodecane, which increases the dielectric constant of the lipid bilayer. Our results show that free fatty acids are inefficient protonophores, as compared with carbonylcyanide-m-chlorphenythydrazone, and that the hypothesis of a weak acid mechanism is not valid with glycolipid bilayers. In the presence of deuterium oxide the H+ conductane was reduced significantly, indicating that proton transport through the glycolipid matrix could occur directly by a hydrogen bond process. The passive transport of H+ through the glycolipid matrix is discussed with regard to the activity of the thylakoid ATP synthase and the inner-envelope H(+)-ATPase.

Full Text

The Full Text of this article is available as a PDF (783.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benz R., McLaughlin S. The molecular mechanism of action of the proton ionophore FCCP (carbonylcyanide p-trifluoromethoxyphenylhydrazone). Biophys J. 1983 Mar;41(3):381–398. doi: 10.1016/S0006-3495(83)84449-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Berkowitz G. A., Peters J. S. Chloroplast Inner-Envelope ATPase Acts as a Primary H+ Pump. Plant Physiol. 1993 May;102(1):261–267. doi: 10.1104/pp.102.1.261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bligny R., Gardestrom P., Roby C., Douce R. 31P NMR studies of spinach leaves and their chloroplasts. J Biol Chem. 1990 Jan 25;265(3):1319–1326. [PubMed] [Google Scholar]
  4. Cole R. M., Macpeek W. A., Cohen W. S. The Coupling of Electron Flow to ATP Synthesis in Pea and Maize Mesophyll Chloroplasts : I. INTERACTION OF ADENINE NUCLEOTIDES AND ENERGY TRANSFER INHIBITORS WITH THE COUPLING FACTOR COMPLEX. Plant Physiol. 1981 Sep;68(3):610–615. doi: 10.1104/pp.68.3.610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Deamer D. W., Gutknecht J. Proton permeation through model membranes. Methods Enzymol. 1986;127:471–480. doi: 10.1016/0076-6879(86)27037-8. [DOI] [PubMed] [Google Scholar]
  6. Deamer D. W., Nichols J. W. Proton flux mechanisms in model and biological membranes. J Membr Biol. 1989 Feb;107(2):91–103. doi: 10.1007/BF01871715. [DOI] [PubMed] [Google Scholar]
  7. Deamer D. W. Proton permeation of lipid bilayers. J Bioenerg Biomembr. 1987 Oct;19(5):457–479. doi: 10.1007/BF00770030. [DOI] [PubMed] [Google Scholar]
  8. Dilger J. P., McLaughlin S. G., McIntosh T. J., Simon S. A. The dielectric constant of phospholipid bilayers and the permeability of membranes to ions. Science. 1979 Dec 7;206(4423):1196–1198. doi: 10.1126/science.228394. [DOI] [PubMed] [Google Scholar]
  9. Dorne A. J., Joyard J., Douce R. Do thylakoids really contain phosphatidylcholine? Proc Natl Acad Sci U S A. 1990 Jan;87(1):71–74. doi: 10.1073/pnas.87.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Douce R., Joyard J. Biochemistry and function of the plastid envelope. Annu Rev Cell Biol. 1990;6:173–216. doi: 10.1146/annurev.cb.06.110190.001133. [DOI] [PubMed] [Google Scholar]
  11. Franklin J. C., Cafiso D. S. Internal electrostatic potentials in bilayers: measuring and controlling dipole potentials in lipid vesicles. Biophys J. 1993 Jul;65(1):289–299. doi: 10.1016/S0006-3495(93)81051-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fuks B., Homblé F. A voltage-dependent porin-like channel in the inner envelope membrane of plant chloroplasts. J Biol Chem. 1995 Apr 28;270(17):9947–9952. doi: 10.1074/jbc.270.17.9947. [DOI] [PubMed] [Google Scholar]
  13. Gross E., Bedlack R. S., Jr, Loew L. M. Dual-wavelength ratiometric fluorescence measurement of the membrane dipole potential. Biophys J. 1994 Jul;67(1):208–216. doi: 10.1016/S0006-3495(94)80471-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gutknecht J. Proton conductance caused by long-chain fatty acids in phospholipid bilayer membranes. J Membr Biol. 1988 Nov;106(1):83–93. doi: 10.1007/BF01871769. [DOI] [PubMed] [Google Scholar]
  15. Gutknecht J. Proton/hydroxide conductance and permeability through phospholipid bilayer membranes. Proc Natl Acad Sci U S A. 1987 Sep;84(18):6443–6446. doi: 10.1073/pnas.84.18.6443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gutknecht J. Proton/hydroxide conductance through lipid bilayer membranes. J Membr Biol. 1984;82(1):105–112. doi: 10.1007/BF01870737. [DOI] [PubMed] [Google Scholar]
  17. Gutknecht J. Proton/hydroxide conductance through phospholipid bilayer membranes: effects of phytanic acid. Biochim Biophys Acta. 1987 Apr 9;898(2):97–108. doi: 10.1016/0005-2736(87)90028-9. [DOI] [PubMed] [Google Scholar]
  18. Hind G., Nakatani H. Y., Izawa S. Light-dependent redistribution of ions in suspensions of chloroplast thylakoid membranes. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1484–1488. doi: 10.1073/pnas.71.4.1484. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kamp F., Hamilton J. A. pH gradients across phospholipid membranes caused by fast flip-flop of un-ionized fatty acids. Proc Natl Acad Sci U S A. 1992 Dec 1;89(23):11367–11370. doi: 10.1073/pnas.89.23.11367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. MUELLER P., RUDIN D. O., TIEN H. T., WESCOTT W. C. Reconstitution of cell membrane structure in vitro and its transformation into an excitable system. Nature. 1962 Jun 9;194:979–980. doi: 10.1038/194979a0. [DOI] [PubMed] [Google Scholar]
  21. Mi F., Peters J. S., Berkowitz G. A. Characterization of a chloroplast inner envelope K+ channel. Plant Physiol. 1994 Jul;105(3):955–964. doi: 10.1104/pp.105.3.955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Montal M., Mueller P. Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. Proc Natl Acad Sci U S A. 1972 Dec;69(12):3561–3566. doi: 10.1073/pnas.69.12.3561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Nagle J. F., Morowitz H. J. Molecular mechanisms for proton transport in membranes. Proc Natl Acad Sci U S A. 1978 Jan;75(1):298–302. doi: 10.1073/pnas.75.1.298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Nagle J. F. Theory of passive proton conductance in lipid bilayers. J Bioenerg Biomembr. 1987 Oct;19(5):413–426. doi: 10.1007/BF00770027. [DOI] [PubMed] [Google Scholar]
  25. Perkins W. R., Cafiso D. S. An electrical and structural characterization of H+/OH- currents in phospholipid vesicles. Biochemistry. 1986 Apr 22;25(8):2270–2276. doi: 10.1021/bi00356a063. [DOI] [PubMed] [Google Scholar]
  26. Perkins W. R., Cafiso D. S. Characterization of H+/OH- currents in phospholipid vesicles. J Bioenerg Biomembr. 1987 Oct;19(5):443–455. doi: 10.1007/BF00770029. [DOI] [PubMed] [Google Scholar]
  27. Schiller C. M., David J. S., Johnston J. M. The subcellular distribution of triglyceride synthetase in the intestinal mucosa. Biochim Biophys Acta. 1970 Sep 8;210(3):489–492. doi: 10.1016/0005-2760(70)90047-0. [DOI] [PubMed] [Google Scholar]
  28. Shinohara Y., Unami A., Teshima M., Nishida H., van Dam K., Terada H. Inhibitory effect of Mg2+ on the protonophoric activity of palmitic acid. Biochim Biophys Acta. 1995 Mar 14;1228(2-3):229–234. doi: 10.1016/0005-2728(94)00179-9. [DOI] [PubMed] [Google Scholar]
  29. Siebertz H. P., Heinz E., Linscheid M., Joyard J., Douce R. Characterization of lipids from chloroplast envelopes. Eur J Biochem. 1979 Nov;101(2):429–438. doi: 10.1111/j.1432-1033.1979.tb19736.x. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES