Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1996 Oct;112(2):779–785. doi: 10.1104/pp.112.2.779

The major form of ADP-glucose pyrophosphorylase in maize endosperm is extra-plastidial.

K Denyer 1, F Dunlap 1, T Thorbjørnsen 1, P Keeling 1, A M Smith 1
PMCID: PMC158002  PMID: 8883389

Abstract

Preparations enriched in plastids were used to investigate the location of ADP-glucose pyrophosphorylase (AGPase) in the developing endosperm of maize (Zea mays L.). These preparations contained more than 25% of the total activity of the plastid marker enzymes alkaline pyrophosphatase and soluble starch synthase, less than 2% of the cytosolic marker enzymes alcohol dehydrogenase and pyrophosphate, fructose 6-phosphate 1-phosphotransferase, and approximately 3% of the AGPase activity. Comparison with the marker enzyme distribution suggests that more than 95% of the activity of AGPase in maize endosperm is extra-plastidial. Two proteins were recognized by antibodies to the small subunit of AGPase from maize endosperm Brittle-2 (Bt2). The larger of the two proteins was the major small subunit in homogenates of maize endosperm, and the smaller, less abundant of the two proteins was enriched in preparations containing plastids. These results suggest that there are distinct plastidial and cytosolic forms of AGPase, which are composed of different subunits. Consistent with this was the finding that the bt2 mutation specifically eliminated the extraplastidial AGPase activity and the larger of the two proteins recognized by the antibody to the Bt2 subunit.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bhave M. R., Lawrence S., Barton C., Hannah L. C. Identification and molecular characterization of shrunken-2 cDNA clones of maize. Plant Cell. 1990 Jun;2(6):581–588. doi: 10.1105/tpc.2.6.581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blake M. S., Johnston K. H., Russell-Jones G. J., Gotschlich E. C. A rapid, sensitive method for detection of alkaline phosphatase-conjugated anti-antibody on Western blots. Anal Biochem. 1984 Jan;136(1):175–179. doi: 10.1016/0003-2697(84)90320-8. [DOI] [PubMed] [Google Scholar]
  3. Dickinson D. B., Preiss J. Presence of ADP-Glucose Pyrophosphorylase in Shrunken-2 and Brittle-2 Mutants of Maize Endosperm. Plant Physiol. 1969 Jul;44(7):1058–1062. doi: 10.1104/pp.44.7.1058. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Echeverria E., Boyer C. D., Thomas P. A., Liu K. C., Shannon J. C. Enzyme activities associated with maize kernel amyloplasts. Plant Physiol. 1988 Mar;86(3):786–792. doi: 10.1104/pp.86.3.786. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Echeverria E., Boyer C., Liu K. C., Shannon J. Isolation of amyloplasts from developing maize endosperm. Plant Physiol. 1985 Mar;77(3):513–519. doi: 10.1104/pp.77.3.513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hylton C., Smith A. M. The rb Mutation of Peas Causes Structural and Regulatory Changes in ADP Glucose Pyrophosphorylase from Developing Embryos. Plant Physiol. 1992 Aug;99(4):1626–1634. doi: 10.1104/pp.99.4.1626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Journet E. P., Douce R. Enzymic capacities of purified cauliflower bud plastids for lipid synthesis and carbohydrate metabolism. Plant Physiol. 1985 Oct;79(2):458–467. doi: 10.1104/pp.79.2.458. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  9. Lin T. P., Caspar T., Somerville C., Preiss J. Isolation and Characterization of a Starchless Mutant of Arabidopsis thaliana (L.) Heynh Lacking ADPglucose Pyrophosphorylase Activity. Plant Physiol. 1988 Apr;86(4):1131–1135. doi: 10.1104/pp.86.4.1131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Müller-Röber B., Sonnewald U., Willmitzer L. Inhibition of the ADP-glucose pyrophosphorylase in transgenic potatoes leads to sugar-storing tubers and influences tuber formation and expression of tuber storage protein genes. EMBO J. 1992 Apr;11(4):1229–1238. doi: 10.1002/j.1460-2075.1992.tb05167.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Neuhaus H. E., Henrichs G., Scheibe R. Characterization of Glucose-6-Phosphate Incorporation into Starch by Isolated Intact Cauliflower-Bud Plastids. Plant Physiol. 1993 Feb;101(2):573–578. doi: 10.1104/pp.101.2.573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Okita T. W. Is there an alternative pathway for starch synthesis? Plant Physiol. 1992 Oct;100(2):560–564. doi: 10.1104/pp.100.2.560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ou-Lee T. M., Setter T. L. Effect of increased temperature in apical regions of maize ears on starch-synthesis enzymes and accumulation of sugars and starch. Plant Physiol. 1985 Nov;79(3):852–855. doi: 10.1104/pp.79.3.852. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ozbun J. L., Hawker J. S., Greenberg E., Lammel C., Preiss J. Starch Synthetase, Phosphorylase, ADPglucose Pyrophosphorylase, and UDPglucose Pyrophosphorylase in Developing Maize Kernels. Plant Physiol. 1973 Jan;51(1):1–5. doi: 10.1104/pp.51.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Salerno G. L., Gamundi S. S., Pontis H. G. A procedure for the assay of sucrose synthetase and sucrose phosphate synthetase in plant homogenates. Anal Biochem. 1979 Feb;93(1):196–199. [PubMed] [Google Scholar]
  16. Sullivan T. D., Kaneko Y. The maize brittle 1 gene encodes amyloplast membrane polypeptides. Planta. 1995;196(3):477–484. doi: 10.1007/BF00203647. [DOI] [PubMed] [Google Scholar]
  17. Sullivan T. D., Strelow L. I., Illingworth C. A., Phillips R. L., Nelson O. E., Jr Analysis of maize brittle-1 alleles and a defective Suppressor-mutator-induced mutable allele. Plant Cell. 1991 Dec;3(12):1337–1348. doi: 10.1105/tpc.3.12.1337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Tsai C. Y., Nelson O. E. Starch-deficient maize mutant lacking adenosine dephosphate glucose pyrophosphorylase activity. Science. 1966 Jan 21;151(3708):341–343. doi: 10.1126/science.151.3708.341. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES