Abstract
A cotton (Gossypium hirsutum L.) control and NaCl-tolerant cell line (cv Coker 312) were grown on media with or without NaCl in the presence or absence of paraquat, buthionine sulfoximine, and oxidized glutathione. On medium with 150 mM NaCl the NaCl-tolerant cell line exhibited no reduction in growth, whereas a 96% reduction was observed in the control line. The NaCl-tolerant cell line that was grown on 150 mM NaCl exhibited significantly greater catalase (341%), peroxidase (319%), glutathione reductase (287%), ascorbate peroxidase (450%), [gamma]-glutamylcysteine synthetase (224%), and glutathione S-transferase (500%) activities than the intolerant control. The NaCl-tolerant cell line had a significantly lower dehydroascorbic acid/ascorbic acid ratio. Paraquat reduced growth by 20 and 53.7%, respectively, in the NaCl-tolerant and control cell line. The NaCl-tolerant cell line also showed a slight tolerance to buthionine sulfoximine. In the buthionine sulfoximine experiments reduced glutathione restored growth in both cell lines, whereas oxidized glutathione restored growth only in the NaCl-tolerant cell line. These data indicate that the NaCl-tolerant cell line exhibited a cross-tolerance to a variety of stress variables and had a more active ascorbate-glutathione cycle.
Full Text
The Full Text of this article is available as a PDF (730.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson J. V., Chevone B. I., Hess J. L. Seasonal variation in the antioxidant system of eastern white pine needles : evidence for thermal dependence. Plant Physiol. 1992 Feb;98(2):501–508. doi: 10.1104/pp.98.2.501. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BEERS R. F., Jr, SIZER I. W. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem. 1952 Mar;195(1):133–140. [PubMed] [Google Scholar]
- Cakmak I., Marschner H. Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiol. 1992 Apr;98(4):1222–1227. doi: 10.1104/pp.98.4.1222. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Conklin P. L., Last R. L. Differential accumulation of antioxidant mRNAs in Arabidopsis thaliana exposed to ozone. Plant Physiol. 1995 Sep;109(1):203–212. doi: 10.1104/pp.109.1.203. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Droog FNJ., Hooykaas PJJ., Van Der Zaal B. J. 2,4-Dichlorophenoxyacetic Acid and Related Chlorinated Compounds Inhibit Two Auxin-Regulated Type-III Tobacco Glutathione S-Transferases. Plant Physiol. 1995 Apr;107(4):1139–1146. doi: 10.1104/pp.107.4.1139. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Foster J. G., Hess J. L. Responses of superoxide dismutase and glutathione reductase activities in cotton leaf tissue exposed to an atmosphere enriched in oxygen. Plant Physiol. 1980 Sep;66(3):482–487. doi: 10.1104/pp.66.3.482. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Griffith O. W., Meister A. Potent and specific inhibition of glutathione synthesis by buthionine sulfoximine (S-n-butyl homocysteine sulfoximine). J Biol Chem. 1979 Aug 25;254(16):7558–7560. [PubMed] [Google Scholar]
- Gupta A. S., Alscher R. G., McCune D. Response of photosynthesis and cellular antioxidants to ozone in populus leaves. Plant Physiol. 1991 Jun;96(2):650–655. doi: 10.1104/pp.96.2.650. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Habig W. H., Pabst M. J., Jakoby W. B. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem. 1974 Nov 25;249(22):7130–7139. [PubMed] [Google Scholar]
- Kuhn D. N., Chappell J., Boudet A., Hahlbrock K. Induction of phenylalanine ammonia-lyase and 4-coumarate:CoA ligase mRNAs in cultured plant cells by UV light or fungal elicitor. Proc Natl Acad Sci U S A. 1984 Feb;81(4):1102–1106. doi: 10.1073/pnas.81.4.1102. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Madamanchi N. R., Alscher R. G. Metabolic bases for differences in sensitivity of two pea cultivars to sulfur dioxide. Plant Physiol. 1991 Sep;97(1):88–93. doi: 10.1104/pp.97.1.88. [DOI] [PMC free article] [PubMed] [Google Scholar]
- May M. J., Leaver C. J. Oxidative Stimulation of Glutathione Synthesis in Arabidopsis thaliana Suspension Cultures. Plant Physiol. 1993 Oct;103(2):621–627. doi: 10.1104/pp.103.2.621. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meister A. Selective modification of glutathione metabolism. Science. 1983 Apr 29;220(4596):472–477. doi: 10.1126/science.6836290. [DOI] [PubMed] [Google Scholar]
- Nickel K. S., Cunningham B. A. Improved peroxidase assay method using leuco 2,3',6-trichloroindophenol and application to comparative measurements of peroxidatic catalysis. Anal Biochem. 1969 Feb;27(2):292–299. doi: 10.1016/0003-2697(69)90035-9. [DOI] [PubMed] [Google Scholar]
- Perl-Treves R., Galun E. The tomato Cu,Zn superoxide dismutase genes are developmentally regulated and respond to light and stress. Plant Mol Biol. 1991 Oct;17(4):745–760. doi: 10.1007/BF00037058. [DOI] [PubMed] [Google Scholar]
- Ramagopal S. Salinity stress induced tissue-specific proteins in barley seedlings. Plant Physiol. 1987 Jun;84(2):324–331. doi: 10.1104/pp.84.2.324. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reddy C. C., Tu C. P., Burgess J. R., Ho C. Y., Scholz R. W., Massaro E. J. Evidence for the occurrence of selenium-independent glutathione peroxidase activity in rat liver microsomes. Biochem Biophys Res Commun. 1981 Aug 14;101(3):970–978. doi: 10.1016/0006-291x(81)91844-1. [DOI] [PubMed] [Google Scholar]
- Schaedle M. Chloroplast glutathione reductase. Plant Physiol. 1977 May;59(5):1011–1012. doi: 10.1104/pp.59.5.1011. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spychalla J. P., Desborough S. L. Superoxide Dismutase, Catalase, and alpha-Tocopherol Content of Stored Potato Tubers. Plant Physiol. 1990 Nov;94(3):1214–1218. doi: 10.1104/pp.94.3.1214. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wise R. R., Naylor A. W. Chilling-enhanced photooxidation : evidence for the role of singlet oxygen and superoxide in the breakdown of pigments and endogenous antioxidants. Plant Physiol. 1987 Feb;83(2):278–282. doi: 10.1104/pp.83.2.278. [DOI] [PMC free article] [PubMed] [Google Scholar]